Determination of exposure to engineered carbon nanoparticles using a self-sensing piezoresistive silicon cantilever sensor
详细信息    查看全文
  • 作者:H. S. Wasisto (1) h.wasisto@tu-braunschweig.de
    S. Merzsch (1)
    A. Waag (1)
    I. Kirsch (2)
    E. Uhde (2)
    T. Salthammer (2)
    E. Peiner (1)
  • 刊名:Microsystem Technologies
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:18
  • 期:7-8
  • 页码:905-915
  • 全文大小:818.9 KB
  • 参考文献:1. Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J Nanopart Res 9(1):11–22
    2. Black J, Elium A, White R, Apte M, Gundel L, Cambie R (2007) MEMS-enabled miniaturized particulate matter monitor employing 1.6 GHz aluminum nitride thin-film bulk acoustic wave resonator and thermophoretic precipitator. In: Proc IEEE Ultrasonics Symposium, pp 476–479
    3. Craighead H (2007) Nanomechanical Systems: measuring more than mass. Nat Nanotechnol 2:18–19
    4. Ekinci KL, Yang YT, Roukes ML (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 95:2682–2689
    5. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberd?rster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178
    6. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—Pros and cons. Environ Health Perspect 114(2):1818–1825
    7. Hajjam A, Wilson JC, Rahafrooz A (2010) Fabrication and characterization of resonant aerosol particle mass sensor. In: Proc 23rd IEEE Intern Conf Micro Electro Mechanical System (MEMS 2010), pp 863–866
    8. Hajjam A, Wilson JC, Rahafrooz A, Pourkamali S (2011) Self-Sustained Micromechanical Resonant Particulate Microbalance/Counters. In: Proc 24th IEEE Intern Conf Micro Electro Mechanical System (MEMS 2011), pp 629–632
    9. Ilic B, Krylov S, Kondratovich M, Craighead HG (2007) Optically actuated nanoelectromechanical oscillators. IEEE J Sel Top Quantum Electron 12(2):392–399
    10. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253
    11. Lübbe J, Temmen M, Schnieder H, Reichling M (2011) Measurement and modelling of non-contact atomic force microscope cantilever properties from ultra-high vacuum to normal pressure conditions. Meas Sci Technol 22:055501 (6pp)
    12. Marijnissen J, Gradoń L (2010) Nanoparticles in medicine and environment: inhalation and health effects. J Aerosol Med Pulm Drug Deliv 23(5):339–341
    13. Merzsch S, Wasisto HS, S?kmen ü, Waag A, Uhde E, Salthammer T, Peiner E (2010) Mass measurement of nanoscale aerosol particles using a piezoelectrically actuated resonant sensor. IEEE Sens Conf open poster
    14. Merzsch S, Wasisto HS, Waag A, Kirsch I, Uhde E, Salthammer T, Peiner E (2011) Low-weight electrostatic sampler for airborne nanoparticles. In: Proc IEEE Sens Conf, pp 1177–1180
    15. Nel A, Xia T, M?dler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627
    16. Nordstr?m M, Zauner DA, Calleja M, Hubner J, Boisen A (2007) Integrated optical readout for miniaturization of cantilever-based sensor system. Appl Phys Lett 91:103512
    17. Paprotny I, Doering F, White RM (2010) MEMS particulate matter (PM) monitor for cellular deployment. In: Proc IEEE Sensors Conf, pp 2435–2440
    18. Peiner E, Balke M, Doering L (2008) Slender tactile sensor for contour and roughness measurements within deep and narrow holes. IEEE Sens J 8(12):1960–1967
    19. Peiner E, Doering L, Stranz A (2010) Surface finish improvement of deep micro bores monitored using an active MEMS cantilever probe. In: Proc Intern Conf Industrial Technol, pp 297–302 (IEEE-ICIT 2010)
    20. Pethig R (2010) Review article—Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811
    21. Sandberg R, Svendsen W, Molhave K, Boisen A (2005) Temperature and pressure dependence of resonant in multi-layer microcantilevers. J Micromech Microeng 15:1454–1458
    22. S?kmen ü, Stranz A, Waag A, Ababneh A, Seidel H, Schmid U, Peiner E (2010) Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications. J Micromech Microeng 20:064007
    23. Wasisto HS, Merzsch S, Stranz A, Waag A, Kirsch I, Uhde E, Salthammer T, Peiner E (2011a) A resonant cantilever sensor for monitoring airborne nanoparticles. In: Proc 16th Intern Conf Solid-State Sens, Actuat Microsyst, pp 1116–1119 (Transducers’11)
    24. Wasisto HS, Merzsch S, Waag A, Kirsch I, Uhde E, Salthammer T, Peiner E (2011b) Enhanced airborne nanoparticles mass sensing using a high-mode resonant silicon cantilever sensor. In: Proc IEEE Sens Conf, pp 736–739
    25. Wasisto HS, Doering L, Merzsch S, Waag A, Uhde E, Peiner E (2011c) Self-exciting and self-sensing resonant cantilever sensors for improved monitoring of airborne nanoparticles exposure. In: Proc IEEE Sens Conf, pp 728–731
    26. Zinoviev K, Dominguez C, Plaza JA, Busto VJC, Lechuga LM (2006) A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces. J Lightwave Technol 24(5):2132–2138
  • 作者单位:1. Institute of Semiconductor Technology (IHT), Technical University of Braunschweig, Hans-Sommer Str. 66, 38106 Braunschweig, Germany2. Material Analysis and Indoor Chemistry, Fraunhofer-Wilhelm-Klauditz-Institut (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
  • 刊物类别:Engineering
  • 刊物主题:Electronics, Microelectronics and Instrumentation
    Nanotechnology
    Mechanical Engineering
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1858
文摘
A novel MEMS-based cantilever sensor with slender geometry is designed and fabricated to be implemented for determining personal exposure to carbon engineered nanoparticles (NPs). The function principle of the sensor is detecting the cumulative mass of NPs deposited on the cantilever surface as a shift in its resonant frequency. A self-sensing method with an integrated full Wheatstone bridge on the cantilever as a piezoresistive strain gauge is introduced for signal readout replacing optical sensing method. For trapping NPs to the cantilever surface, an electrostatic field is used. The calculated equivalent mass-induced resonant frequency shift due to NPs sampling is measured to be 11.78 ± 0.01 ng. The proposed sensor exhibits a mass sensitivity of 8.33 Hz/ng, a quality factor of 1,230.68 ± 78.67, and a temperature coefficient of the resonant frequency (TC f ) of ?28.6 ppm/°C. These results and analysis indicate that miniaturized sensors based on self-sensing piezoresistive microcantilever can offer the performance to fulfill the requirements of real-time monitoring of NPs-exposed personnel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700