Cross-layered resource allocation in UWB noise-OFDM-based ad hoc surveillance networks
详细信息    查看全文
  • 作者:Shrawan Chittoor Surender (1)
    Ram M Narayanan (2)
    Chita R Das (1)
  • 关键词:Coexistence ; Radar ; communications ; UWB ; Noise ; OFDM ; Multi ; radar ; Ad hoc networks ; Cross ; layer ; Surveillance networks ; Distributed resource allocation
  • 刊名:EURASIP Journal on Wireless Communications and Networking
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:2013
  • 期:1
  • 全文大小:1874KB
  • 参考文献:1. Mehbodniya A, Aissa S: Coexistence between DS-UWB and MB-OFDM: Analysis and interference mitigation. In / Proceedings of the GLOBECOM 07. Washington, DC, USA; November 2007. doi:10.1109/GLOCOM.2007.986
    2. Ding L, Melodia T, Batalama SN, Matyjas JD: Distributed routing, relay selection, and spectrum allocation in cognitive and cooperative ad hoc networks. In / Proceedings of the IEEE SECON, vol. 2010. Boston, MA, USA; June 2010. doi:10.1109/SECON.2010.5508267
    3. Li H, Cheng Y, Zhou C, Wan P: Multi-dimensional conflict graph based computing for optimal capacity in MR-MC wireless networks. In / Proceedings of the 30th International Conference on Distributed Computing Systems (ICDCS). Genoa, Italy; June 2010. doi:10.1109/ICDCS.2010.58
    4. Galuba W, Papadimitratos P, Poturalski M, Aberer K, Despotovic Z, Kellerer: CASTOR scalable secure routing for ad-hoc networks. In / Proceedings of the IEEE INFOCOM. San Diego, CA, USA; March 2010. doi:10.1109/INFCOM.2010.5462115
    5. Gentile C, Kik A: WLC28-: an evaluation of ultra wideband technology for indoor ranging. In / Proceedings of the GLOBECOM, vol. 06. San Francisco, CA, USA; December 2006. doi:10.1109/GLOCOM.2006.778
    6. Bellorado J, Ghassemzadeh SS, Greenstein LJ, Sveinsson T, Tarokh V: Coexistence of ultra-wideband systems with IEEE-802.11a wireless LANs. In / Proceedings of the GLOBECOM 03. San Francisco, CA, USA; December 2003. doi:10.1109/GLOCOM.2003.1258271
    7. Surender SC, Narayanan RM: UWB noise-OFDM netted radar: physical layer design and analysis. / IEEE Trans. Aerospace Electron. Syst 2011,47(2): 1380-400. CrossRef
    8. Bharadwaj P, Runkle P, Carin L, Berrie JA, Hughes JA: Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits. / IEEE Trans. Aerospace Electron. Syst 2001,37(2): 595-06. CrossRef
    9. Li Z, Papson S, Narayanan RM: Data level fusion of multi-look inverse synthetic aperture radar (ISAR) images. / IEEE Trans. Geosci. Remote Sens 2008,46(5): 1394-406. CrossRef
    10. Koutsonikolas D, Wang C, Hu YC: CCACK: efficient network coding based opportunistic routing through cumulative coded acknowledgments. In / Proceedings of the IEEE INFOCOM 2010. San Diego, CA, USA; March 2010. doi:10.1109/INFCOM.2010.5462125
    11. Quirk KJ, Srinivasan M: An MSK waveform for radar applications. In / Proceedings of the GLOBECOM 09. Honolulu, HI, USA; December 2009. doi:10.1109/GLOCOM.2009.5425647
    12. Dutta P, Jaiswal S, Panigrahi D, Rastogi R: A new channel assignment mechanism for rural wireless mesh networks. In / Proceedings of the 27th IEEE Conference on Computer Communications, INFOCOM. Phoenix, AZ, USA; April 2008. doi:10.1109/INFOCOM.2008.294
    13. Lin X, Rasool S: A distributed joint channel-assignment scheduling and routing algorithm for multi-channel ad hoc wireless networks. In / Proceedings of the 26th IEEE INFOCOM 2007. Anchorage, AK, USA; May 2007. doi:10.1109/INFCOM.2007.134
    14. Baker CJ, Hume AL: Netted radar sensing. / IEEE Aerospace Electron. Syst. Mag 2003,3(2): 3-. CrossRef
    15. Garmatyuk D, Schuerger J, Morton YT, Binns K, Durbin M, Kimani J: Feasibility study of a multi-carrier dual-use imaging radar and communication system. In / Proceedings of the European Radar Conference (EuRAD 2007). Munich, Germany; December 2007. doi:10.1109/EURAD.2007.4404970
    16. Saddik GN, Singh RS, Brown ER: Ultra-wideband multifunctional communications/radar system. / IEEE Trans. Microwave Theory Techn 2007,55(7): 1431-437. CrossRef
    17. Gupta A, Mohapatra P: A survey on ultrawideband medium access control schemes. / Comput. Netw 2007,51(11): 2976-993. CrossRef
    18. Yu Y, Giannakis GB: Joint congestion control and OFDMA scheduling for hybrid wireline-wireless networks. In / Proceedings of the IEEE INFOCOM 2007. Anchorage, AK, USA; May 2007. doi:10.1109/INFCOM.2007.118
    19. Hua Y, Zhang Q, Niu Z: Resource allocation in multi-cell OFDMA-based relay networks. In / Proceedings of the IEEE INFOCOM 2010. San Diego, CA, USA; March 2010. doi:10.1109/INFCOM.2010.5462037
    20. Gao S, Qian L, Vaman D: Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks. / IEEE Trans. Wirel. Commun 2009,8(10): 5202-213. CrossRef
    21. Wu X, Srikant R: Regulated maximal matching: a distributed scheduling algorithm for multi-hop wireless networks with node exclusive spectrum sharing. In / Proceedings of the IEEE CDC. Seville, Spain; December 2005. doi:10.1109/CDC.2005.1583011
    22. Li Y: / Orthogonal Frequency Division Multiplexing for Wireless Communications. New York, NY: Springer; 2006. CrossRef
    23. Dawood M, Narayanan RM: Generalised wideband ambiguity function of a coherent ultrawideband random noise radar. / IEE Proc. Radar Sonar Navigat 2003,150(5): 379-86. CrossRef
    24. Surender SC, Narayanan RM, Das CR: Performance analysis of communications & radar coexistence in a covert UWB OSA system. In / Proceedings of the 2010 IEEE GLOBECOM. Miami, FL, USA; December 2010. doi:10.1109/GLOCOM.2010.5683837
    25. Tassiulas L: Linear complexity algorithms for maximum throughput in radio networks and input queued switches. In / Proceedings of the IEEE INFOCOM 1998. San Francisco, CA, USA; March 1998. doi:10.1109/INFCOM.1998.665071
    26. Chaporkar P, Kar K, Sarkar S: Throughput guarantees in maximal scheduling in wireless networks. In / Proceedings of the 43rd Annual Allerton Conference on Communication, Control and Computing. Monticello, IL, USA; September 2005:28-0.
    27. OMNET++ Integrated Development Environment http://omnetpp.org/
    28. Narayanan RM: ultra-wideband, Radar imaging using spectrally fragmented (UWB) noise waveforms. In / Proceedings of the 14th AFOSR Electromagnetics Workshop, San Antonio. TX, USA; January 2003:P4-P5.
    29. Skiena SS: / Algorithm Design Manual. London, UK: Springer; 2008. CrossRef
    30. Shi Q, Yang Z, He L, Peng K: All digital baseband frequency hopping OFDM system. In / Proceedings of the 11th IEEE ICCS. Guangzhou, China; November 2008. doi:10.1109/ICCS.2008.4737268
  • 作者单位:Shrawan Chittoor Surender (1)
    Ram M Narayanan (2)
    Chita R Das (1)

    1. Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
    2. Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
  • ISSN:1687-1499
文摘
Situational awareness in military surveillance and emergency responder scenarios requires detection of long range targets and secure communication of this information across a multi-sensor network. A potential approach towards this requirement is to harness the coexisting advantages of radar sensing and wireless communications. A multi-functional communications-embedded radar design that implicitly develops into a cross-layered multi-radar secure wireless ad hoc network is proposed to address this need. First, we demonstrate radar and communications coexistence through analysis of our novel composite orthogonal frequency division multiplexing (OFDM)-embedded ultra wideband (UWB) noise waveform’s bit error rate and ambiguity function formulations. Second, to solve the medium access problem of allocating the multiple OFDM frequencies between different ad hoc radars nodes, we propose a simple yet fully distributed, channel-diversity-aided algorithm. It constructs a contention-free network, scaling logarithmically with the number of radar nodes, and analytically guarantees a provable fraction of the maximum throughput achieved by any optimal centralized allocation algorithm. Furthermore, our solution dynamically adapts with channel variations and topology changes. Working in-sync with the UWB noise-based single radio multi-channel wireless platform, this distributed resource allocation builds a synergistic cross-layered ad hoc network of radars.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700