A compact planar self-affine sierpinski carpet fractal monopole antenna with band notch characteristics for ultra wideband communications
详细信息    查看全文
  • 作者:Laxmi Ray ; Mohammad Rafiqul Haider
  • 关键词:Ultra wideband (UWB) ; VSWR ; Band ; notch ; WLAN ; Self ; Affine Fractals ; Gain
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:86
  • 期:3
  • 页码:393-405
  • 全文大小:2,157 KB
  • 参考文献:1.Liang, X.L. Ultra-wideband antenna and design. Ultra wideband– Current status and future trends, (Edited by; Dr. Mohammad A. Matin), 2012, ISBN: 978-953-51–0781-1.
    2.Subbarao, A., & Raghavan, S. (2012). A compact UWB slot antenna with signal rejection in 5–6 GHz band. Microwave and Optical Technology Letters, 54, 1292–1296.CrossRef
    3.Cho, Y., Kim, K., Choi, D., Lee, S., & Park, S. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54, 1453–1460.CrossRef
    4.Lee, Y., Sun, J., Choi, D., Ma, T., & Li, C. (2007). A tapered monopole antenna with band notch function for ultra-wideband, presented at the international conference.
    5.Deng, J. Y., Yin, Y. Z., Wang, Q., & Liu, Q. Z. (2009). Study on a CPW- fed UWB antenna with dual band-notched characteristic. Journal of Electromagnetic Waves and Applications, 23(4), 513–521.CrossRef
    6.Xia, Y. Q., Luo, J., & Edwards, D. J. (2010). Novel miniature printed monopole antenna with dual tunable band-notched characteristics for UWB applications. Journal of Electromagnetic Waves and Applications, 24(13), 1783–1793.
    7.Kim, Y., & Kwon, D. H. (2004). CPW –fed planar ultrawideband antenna having a frequency band notch function. Electronics Letters, 40, 403–405.CrossRef
    8.Cho, Y., Kim, K., Choi, D., Lee, S., & Park, S. (2007). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Wireless Propagation Letters, 6, 70–73.CrossRef
    9.Tilanthe, P., Sharma, P. C., & Bandopadhyay, T. K. (2011). A compact UWB antenna with dual band-notch rejection. Progress in Electromagnetics Research B, 35, 389–405.CrossRef
    10.Al-Husseini, M., ostantine, J. C., hristodoulou, C. G. C., Barbin,S. E., El-Hajj, A. & Kabalan, K. Y. (2012). A reconfigurable frequency-notched UWB antenna with split-ring resonators. In Proceedings of Asia-Pacific Microwave Conference (pp. 618–621).
    11.Zhang, Y., Hong, W., Yu, C., Kuai, Z.-Q., Don, Y.-D., & Zhou, J.-Y. (2008). Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Transactions on Antennas and Propagation, 56(9), 3063–3068.CrossRef
    12.Lin C. C. & Ziolkowski, R. W. (2010). Tri-band notched ultra-wideband antenna using capacitively loaded loops (C LLs). In Proceedings of IEEE International Symposium on Antennas and Propagation (pp. 1–4).
    13.Lin, C. C., Jin, P., & Ziolkowski, R. W. (2012). Single, dual and tri-bandnotched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators. IEEE Transactions on Antennas and Propagation, 60(1), 102–109.CrossRef
    14.Chair, R., & Kishk, A. A. (2004). Ultra wide-band coplanar waveguide-fed rectangular slot antenna. IEEE Antennas and Wireless Propagation Letters, 3, 227–229.CrossRef
    15.Abbosh, M., & Bialkowsky, M. E. (2008). Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE Transactions on Antennas and Propagation, 56, 17–23.CrossRef
    16.Yingying, Lu, Lam, Hung-Jui, & Bornemann, Jens. (2008). Coplanar UWB antenna with increased suppression characteristics. Microwave and Optical Technology Letters, 50(12), 3111–3114.CrossRef
    17.Ooi, P. C., & Selvan, K. T. (2010). The effect of ground plane on the performance of a square loop cpw-fed printed antenna. Progress In Electromagnetics Research Letters, 19, 103–111.CrossRef
    18.Habib, M. A., Nedil, M., Djaiz, A., & Denidni, T. A. (2009). UWB binomialcurved monopole with binomial curved ground plane. Microwave and Optical Technology Letters, 51, 2308–2313.CrossRef
    19.Reha, A., Amri, A. E., Benhmammouch, O., & Said, A. O. (2014). Fractal antennas: A novel miniaturization technique for wireless networks. Transactions on Networks and Communications, 2(5), 165–193.CrossRef
    20.Pourahmadazar, J., Ghobadi, C., Nourinia, J., & Shirzad, H. (2010). Multiband ring fractal monopole antenna for mobile devices. IEEE Antennas and Wireless Propagation Letters, 9, 863–866.CrossRef
    21.Krishna, D. D., Gopikrishna, M., Aanandan, C. K., Mohanan, P., & Vasudevan, K. (2009). Compact wideband Koch fractal printed slot antenna. IET Microwaves, Antennas and Propagation, 3, 782–789.CrossRef
    22.Dhar, S., Ghatak, R., Gupta, B., & Poddar, D. R. (2013). A Wideband Minkowski fractal dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 61, 2895–2903.CrossRef MathSciNet
    23.Fallahi, H., & Atlasbaf, Z. (2013). Study of a Class of UWB CPW-Fed monopole antenna with fractal elements. IEEE Antennas and Wireless Propagation Letters, 12, 1484–1487.CrossRef
    24.Pourahmadazar, J., Ghobadi, C., & Nourinia, J. (2011). Novel modified Pythagorean tree fractal monopole Antennas for UWB applications. IEEE Antennas and Wireless Propagation Letters, 10, 484–487.CrossRef
    25.Ghatak, R., Biswas, B., Karmakar, A., & Poddar, D. R. (2013). A circular fractal UWB antenna based on descartes circle theorem with band rejection capability. Progress in Electromagnetics Research C, 37, 235–248.CrossRef
    26.B. Ghosh, B. Sinha, V. Kartikeyan, “Fractal Apertures in Waveguides, Conducting Screens and Cavities: Analysis and Design,” Springer International Publishing, vol.187, 2014, ISBN: 9783319065359.
    27.Verma, S., Ghatak, R., Dwivedi, R,. & Kumar D. (2012). A compact ultrawideband elliptical aperture antenna with WLAN rejection characteristics. In Fourth International Conference on Computational Intelligence and Communication Networks (CICN), (pp. 53–56).
    28.Ghatak, R., Karmakar, A.,Biswas, B. & Poddar, D.R. (2012). Inscribed gasket fractal circular monopole antenna for UWB application. In 1st International Conference on Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), (pp. 1-4).
    29.Gheethan, A., & Anagnostou, D. (2012). Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands. IEEE Transactions on Antennas and Propagation, 60(4), 2071–2076.CrossRef
    30.Siddiqui, J. Y., Saha, C., & Antar, Y. M. M. (2014). Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 62(8), 4015–4020.CrossRef
    31.Rajeshkumar, V., & Raghavan, S. (2015). Bandwidth enhanced compact fractal antenna for UWB applications with 5–6 GHz band rejection. Microwave and Optical Technology Letters, 57(3), 607–613.CrossRef
    32.Subbarao, A., & Raghavan, S. (2012). A compact UWB slot antenna with signal rejection in 5–6 GHz band. Microwave and Optical Technology Letters, 54(5), 1292–1296.CrossRef
    33.Ojaroudi, M., Ghanbari, G., Ojaroudi, N., & Ghobadi, Ch. (2009). Small square monopole antenna for UWB applications with variable frequency band-notch function. IEEE Antennas and Wireless Propagation Letters, 8, 1061–1064.CrossRef
    34.Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra-wide band applications. In International Journal of Antennas and Propagation.
  • 作者单位:Laxmi Ray (1)
    Mohammad Rafiqul Haider (1)

    1. Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
This paper presents a novel compact planar self-affine sierpinski carpet fractal monopole coplanar waveguide (CPW) fed ultra-wideband (UWB) antenna with improved gain, radiation efficiency and a sharp band-notched characteristics for the rejection of interfering WLAN (5.15–5.825 GHz) assigned for IEEE 802.11a narrow band communication system. The significant improvements in gain and radiation efficiency are achieved by the introduction of carpet fractals in the radiating circular patch. The antenna covers the entire UWB frequency band (3.1–10.6 GHz) with voltage standing wave ratio (VSWR) ≤ 2 which depicts optimum impedance matching of the proposed antenna structure. The antenna occupies a compact size of 36 × 41 mm2 and band rejection is achieved by embedding compact C—shaped slots with folded arms on the ground planes of the CPW feed lines which yield a very sharp notch for WLAN band. The band rejection is demonstrated by a high value of VSWR around notch frequency. Compact self-affine sierpinski carpet fractals are introduced in the radiating circular patch to improve performance of the UWB antenna. The proposed fractal antenna exhibits improved gain that varies from 2 to 6 dBi and optimum radiation efficiency which varies from 85 to 99.9 % over the UWB frequency range. The gain and radiation efficiency are suppressed with strong dips at the desired rejection WLAN band. Omnidirectional radiation characteristic is achieved over UWB frequency range which supports the uniform transmission of signal irrespective of the orientation of the antenna direction. Keywords Ultra wideband (UWB) VSWR Band-notch WLAN Self-Affine Fractals Gain

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700