Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments
详细信息    查看全文
  • 作者:Helmut Geistlinger ; Iman Ataei-Dadavi ; Hans-Jörg Vogel
  • 关键词:2D ; micromodel with rough surface ; Precursor thin ; film flow ; Snap ; off trapping ; Universal power law ; Ordinary bond percolation
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:112
  • 期:1
  • 页码:207-227
  • 全文大小:2,106 KB
  • 参考文献:Adler, P.M.: Multiphase flow in porous media. Ann. Rev. Fluid Mech. 20, 35–59 (1988)CrossRef
    Bico, J., Tordeux, C., Quéré, D.: Rough wetting. Europhys. Lett. 55, 214 (2001)CrossRef
    Blunt, M.J., King, M.J., Scher, H.: Simulation and theory of two-phase flow in porous media. Phys. Rev. A 46, 7680 (1992)CrossRef
    Blunt, M.J., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 52, 6387–6403 (1995). doi:10.​1103/​PhysRevE.​52.​6387 CrossRef
    Brooks, M.C., Wise, W.R., Annable, M.D.: Fundamental changes in in situ air sparging flow patterns. Ground Water Monit. Rem. 19, 105–113 (1999)CrossRef
    Brusseau, M.L., Narter, M., Schnaar, G., Marble, J.: Measurement and estimation of organic-liquid/water interfacial areas for several natural porous media. Environ. Sci. Technol. 43, 3619–3625 (2009)CrossRef
    Buchgraber, M., Kovscek, A.R., Castanier, L.M.: A study of microscale gas trapping using etched silicon micromodels. Transp. Porous Med. 95, 647–668 (2012). doi:10.​1007/​s11242-012-0067-0 CrossRef
    Burlatsky, S.F., Oshanin, G., Cazabat, A.M., Moreau, M.: Microscopic model of upward creep of an ultrathin wetting film. Phys. Rev. Lett. 76, 86–89 (1996)CrossRef
    Cazabat, A.M., Gerdes, S., Valignat, M.P., Villette, S.: Dynamics of wetting: from theory to experiment. Interface Sci. 5, 129–139 (1997)CrossRef
    Cazabat, A.M., Cohen Stuart, M.A.: Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90, 5845 (1986)CrossRef
    Chatzis, I., Morrow, N.R., Lim, H.T.: Magnitude and detailed structure of residual oil saturation. Paper SPE/DOE-10681, Presented at the 3rd Symposium on Enhanced Oil Recovery, Tulsa, April 4–7 (1982)
    Constantinides, G.N., Payatakes, A.C.: Effects of precursor wetting films in immiscible displacement through porous media. Transp. Porous Media 38, 291–317 (2000)CrossRef
    Constanza-Robinson, M.S., Harrold, K.H., Lieb-Lappen, R.M.: X-ray microtomography determination of air-water interfacial area-water saturation relationships in sandy porous media. Environ. Sci. Technol. 42, 2949–2956 (2008)CrossRef
    de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Physics 57, 827 (1985)CrossRef
    Fisher, M.E.: The theory of condensation and the critical point. Physics 3, 255–283 (1967)
    Geistlinger, H., Ataei-Dadavi, I.: Influence of the heterogeneous wettability on capillary trapping in glass-beads monolayers: comparison between experiments and the invasion percolation theory. J. Colloid Interface Sci. 459, 230–240 (2015)
    Geistlinger, H., Lazik, D., Krauss, G., Vogel, H.-J.: Pore-scale and continuum modeling of gas flow pattern obtained by high-resolution optical bench-scale experiments. Water Resour. Res. 45, W04423 (2009). doi:10.​1029/​2007WR006548 CrossRef
    Geistlinger, H., Mohammadian, S., Schlueter, S., Vogel, H.-J.: Quantification of capillary trapping of gas clusters using X-ray microtomography. Water Resour. Res. 50, 4514–4529 (2014). doi:10.​1002/​2013WR014657 CrossRef
    Geistlinger, H., Mohammadian, S.: Capillary trapping mechanism in strongly water wet systems: comparison between experiment and percolation theory. Adv. Water Resour. 79, 35–50 (2015)CrossRef
    Georgiadis, A., Berg, S., Makurat, A., Maitland, G., Ott, H.: Pore-scale micro-computed-tomography imaging: nonwetting-phase cluster-size distribution during drainage and imbibition. Phys. Rev. E 88, 033002 (2013)CrossRef
    Hashemi, M., Dabir, B., Sahimi, M.: Dynamics of two-phase flow in porous media: simultaneous invasion of two fluids. AIChE J. 45, 1365–1382 (1999a)CrossRef
    Hashemi, M., Sahimi, M., Dabir, B.: Monte Carlo simulation of two-phase flow in porous media: invasion with two invaders and two defenders. Phys. A 267, 1–33 (1999b)CrossRef
    Hay, K.M., Dragilab, M.I., Liburdyc, J.: Theoretical model for the wetting of a rough surface. J. Colloid Interface Sci. 325, 472–477 (2008)CrossRef
    Herman, B., Lemasters, J.J.: Optical Microscopy: Emerging Methods and Applications. Academic Press, New York, NY (1993)
    Herring, A.L., Andersson, L., Schlüter, S., Sheppard, A.P., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91–102 (2015). doi:10.​1016/​j.​advwatres.​2015.​02.​005 CrossRef
    Hunt, A.G., Sahimi, M.: Flow and transport in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. in print (2015)
    Iglauer, S., Favretto, S., Spinelli, G., Schena, G., Blunt, M.J.: X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. Phys. Rev. E 82, 056315 (2010)CrossRef
    Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual CO2 imaged with X-ray microtomography. Geophys. Res. Lett. 38(L21403), 2011G (2011). doi:10.​1029/​L049680
    Iglauer, S., Paluszny, A., Blunt, M.J.: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography. Fuel 103, 905–914 (2013)CrossRef
    ImageJ, Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://​imagej.​nih.​gov/​ij/​ , pp. 1997–2014
    ISO-standard 4287 (1997) Geometrical Product Specifications (GPS)—Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters
    Jeong, S.W., Corapcioglu, M.Y.: Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. J. Hazard. Mater. 126, 8–13 (2005)CrossRef
    Johnson, P.C., Johnson, R.L., Brucea, C.L., Leeson, A.: Advances in in situ air sparging/biosparging. Bioremediation J. 5, 251–266 (2001)CrossRef
    Juanes, R., Spiteri, E.J., Orr Jr., F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2-storage. Water Resour. Res. 42, W12418 (2006). doi:10.​1029/​2005WR004806 CrossRef
    Kaoa, C.M., Chena, C.Y., Chenb, S.C., Chiena, H.Y., Chen, Y.L.: Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70, 1492–1499 (2008)CrossRef
    Karadimitriou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res 50, 8125–8140 (2014)CrossRef
    Karpyn, Z., Piri, M., Singh, G.: Experimental investigation of trapped oil clusters in a water-wet bead pack using X-ray microtomography. Water Resour. Res. 46, W04510 (2010)CrossRef
    Kibbey, T.C.G.: The configuration of water on rough natural surfaces: implications for understanding air-water interfacial area, film thickness, and imaging resolution. Water Resour. Res. 49, 4765–4774 (2013)CrossRef
    Krummel, A.T., Datta, S.S., Münster, S., Weitz, D.A.: Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 59, 1022–1029 (2013)CrossRef
    Landry, C.J., Karpyn, Z.T., Piri, M.: Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs. Geofluids 11, 209–227 (2011)CrossRef
    Lenormand, R., Zarcone, C.: Role of roughness and edges during imbibition in square capillaries, SPE-paper No. 13264. In: Proceedings of the 59th Ann. Tech. Conf. of the SPE, Houston, TX (SPE, Richardson, TX, 1984) (1984)
    Levinson, P., Cazabat, A.M., Cohen Stuart, M.A., Heslot, F., Nicolet, S.: The spreading of macroscopic droplets. Revue Phys. Appl. 23, 1009–1016 (1988)CrossRef
    Mohammadian, S., Geistlinger, H., Vogel, H.-J.: Quantification of gas phase trapping within the capillary fringe using micro-CT, Special section: dynamic processes in capillary fringes. Vadose Zone J. doi:10.​2136/​vzj2014.​06.​0063
    Mohammadian, S.: A micro-CT-study of capillary trapping and pore-scale quantification of effective mass transfer parameters. PhD-thesis, Faculty of Geosciences. Technical University Freiberg (2015)
    Pan, C., Dalla, E., Franzosi, D., Miller, C.T.: Pore-scale simulation of entrapped non-aqueous phase liquid dissolution. Adv. Water Resour. 30, 623–640 (2007)CrossRef
    Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D., Butt, H.-J.: How superhydrophobicity breaks down. PNAS 110, 3254–3258 (2013)CrossRef
    Prodanovic, M., Lindquist, W.B., Seright, R.S.: 3D-image based characterization of fluid displacement in a Berea core. Adv. Water Resour. 46, 214 (2007)CrossRef
    Ronen, D., Magaritz, M., Paldor, N., Bachmat, Y.: The behavior of groundwater in the vicinity of the water table evidence by specific discharge profiles. Wat. Resour. Res. 22, 1217–1224 (1986)CrossRef
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory, Revised, 2nd edn. Taylor and Francis, Philadelphia (1994)
    Suekane, T., Zhou, N., Hosokawa, T., Matsumoto, T.: Direct observation of trapped gas bubbles by capillarity in sandy porous media. Transp. Porous Med. 82, 111–122 (2010). doi:10.​1007/​s11242-009-9439-5 CrossRef
    Vizika, O., Avraam, D.G., Payatakes, A.C.: On the role of the viscosity ratio during low-capillary number forced imbibition in porous media. J. Colloid Interface Sci. 165, 386–401 (1994)CrossRef
    Voburger, T.V., Raja, J.: Surface Finish Metrology Tutorial. US Department of Commerce, National Institute of Standards and Technology, NISTIR 89-4088 (1999)
    Washburn, E.W.: Phys. Rev. 17, 273 (1921)CrossRef
    Wenzel, R.N.: Ind. Eng. Chem. 28, 988 (1936)CrossRef
    Wenzel, R.N.: J. Phys. Colloid Chem. 53, 1466 (1949)CrossRef
    Werth, C.J., Zhang, C., Brusseau, M.L., Oostrom, M., Baumann, T.: A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Cont. Hydrol. 113, 1–24 (2010)CrossRef
    Wiesendanger, R.: Scanning Probe Microscopy: Methods and Applications. Cambridge University Press, New York, NY (1994)CrossRef
    Wildenschild, D., Armstrong, R.T., Herring, A.L., Young, I.M., Careyc, J.W.: Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow rate. Energy Procedia 4, 4945–4952 (2011)CrossRef
    Wildenschild, D., Shepard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)CrossRef
    Wilkinson, D.: Percolation model of immiscible displacement in the presence of buoyancy forces. Phys. Rev. A 30, 520–531 (1984)CrossRef
    Zhou, D., Sten, E.J.: Displacement of trapped oil from water-wet reservoir rock. Transp. Porous Med. 11, 1 (1993)CrossRef
  • 作者单位:Helmut Geistlinger (1)
    Iman Ataei-Dadavi (1)
    Hans-Jörg Vogel (1)

    1. UFZ-Environmental Research Centre, Halle/Saale, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
According to experimental observations, capillary trapping is strongly dependent on the roughness of the pore–solid interface. We performed imbibition experiments in the range of capillary numbers (Ca) from \(10^{-6}\) to \(5\times 10^{-5}\) using 2D-micromodels, which exhibit a rough surface. The microstructure comprises a double-porosity structure with pronounced macropores. The dynamics of precursor thin-film flow and its importance for capillary trapping are studied. The experimental data for thin-film flow advancement show a square-root time dependence. Based on the experimental data, we conducted inverse modeling to investigate the influence of surface roughness on the dynamic contact angle of precursor thin-film flow. Our experimental results show that trapped gas saturation decreases logarithmically with an increasing capillary number. Cluster analysis shows that the morphology and number of trapped clusters change with capillary number. We demonstrate that capillary trapping shows significant differences for vertical flow and horizontal flow. We found that our experimental results agree with theoretical results of percolation theory for \(Ca =10^{-6}\): (i) a universal power-like cluster size distribution, (ii) the linear surface–volume relationship of trapped clusters, and (iii) the existence of the cutoff correlation length for the maximal cluster height. The good agreement is a strong argument that the experimental cluster size distribution is caused by a percolation-like trapping process (ordinary percolation). For the first time, it is demonstrated experimentally that the transition zone model proposed by Wilkinson (Phys Rev A 30:520–531, 1984) can be applied to 2D-micromodels, if bicontinuity is generalized such that it holds for the thin-film water phase and the bulk gas phase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700