Aberrant gut microbiota composition at the onset of type 1 diabetes in young children
详细信息    查看全文
  • 作者:Marcus C. de Goffau (1)
    Susana Fuentes (2)
    Bartholomeus van den Bogert (2) (3)
    Hanna Honkanen (4)
    Willem M. de Vos (2) (5)
    Gjalt W. Welling (1)
    Heikki Hy?ty (4) (6)
    Hermie J. M. Harmsen (1)
  • 关键词:Butyrate ; Human Intestinal Tract Chip ; Microbiota ; Type 1 diabetes
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1569-1577
  • 全文大小:318 KB
  • 参考文献:1. Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88-6 CrossRef
    2. de Vos WM, de Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(Suppl 1):S45–S56 CrossRef
    3. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220-30 CrossRef
    4. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65-0 CrossRef
    5. Surana NK, Kasper DL (2012) The yin yang of bacterial polysaccharides: lessons learned from / B. fragilis PSA. Immunol Rev 245:13-6 CrossRef
    6. Kosiewicz MM, Zirnheld AL, Alard P (2011) Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol 2:180 CrossRef
    7. Sokol H, Pigneur B, Watterlot L et al (2008) / Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731-6736 CrossRef
    8. Brugman S, Klatter FA, Visser JT et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105-108 CrossRef
    9. Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109-113 CrossRef
    10. Giongo A, Gano KA, Crabb DB et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82-1 CrossRef
    11. de Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62:1238-244 CrossRef
    12. Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46 CrossRef
    13. Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814 CrossRef
    14. Vaarala O, Atkinson MA, Neu J (2008) The “perfect storm-for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555-562 CrossRef
    15. Brown CT, Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6:e25792 CrossRef
    16. Van Immerseel F, Ducatelle R, de Vos M et al (2010) Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol 59:141-43 CrossRef
    17. Flint HJ, Duncan H, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101-111 CrossRef
    18. Segain JP, de la Raingeard BD, Bourreille A et al (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47:397-03 CrossRef
    19. Furet JP, Kong LC, Tap J et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049-057 CrossRef
    20. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of type I diabetes—the analysis of the data on published incidence trends. Diabetologia 42:1395-403 CrossRef
    21. Karvonen M, Pitkaniemi J, Tuomilehto J (1999) The onset age of type 1 diabetes in Finnish children has become younger. The Finnish Childhood Diabetes Registry Group. Diabetes Care 22:1066-070 CrossRef
    22. Weets I, de Leeuw I, Du Caju MV et al (2002) The incidence of type 1 diabetes in the age group 0-9 years has not increased in Antwerp (Belgium) between 1989 and 2000: evidence for earlier disease manifestation. Diabetes Care 25:840-46 CrossRef
    23. Pundziute-Lycka A, Dahlquist G, Nystrom L et al (2002) The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-4 years group in Sweden 1983-998. Diabetologia 45:783-91 CrossRef
    24. Rajilic-Stojanovic M, Heilig HG, Molenaar D et al (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736-751 CrossRef
    25. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808-12
    26. Jalanka-Tuovinen J, Salonen A, Nikkila J et al (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6:e23035 CrossRef
    27. Lous P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1- CrossRef
    28. Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578-585 CrossRef
    29. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222-27
    30. Hague A, Butt AJ, Paraskeva C (1996) The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? Proc Nutr Soc 55:937-43 CrossRef
    31. Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619-625 CrossRef
    32. Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM (2010) Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138-148 CrossRef
    33. Russo I, Luciani A, de Cicco P, Troncone E, Ciacci C (2012) Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS One 7:e32841 CrossRef
    34. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW (1999) Infections in patients with diabetes mellitus. N Engl J Med 341:1906-912 CrossRef
    35. Nowakowska M, Jarosz-Chobot P (2004) / Streptococcus group B (GBS)—characteristic, occurrence in children and adolescents with type 1 diabetes mellitus. Pol J Microbiol 53:17-2
    36. García E, López R (1995) / Streptococcus pneumoniae type 3 encodes a protein highly similar to the human glutamate decarboxylase (GAD65). FEMS Microbiol Lett 133:113-19 CrossRef
    37. Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A (2013) Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int. doi:10.1111/ped.12243
    38. Collins MD, Lawson PA, Willems A et al (1994) The phylogeny of the genus / Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812-26 CrossRef
    39. Johnson JL, Francis BS (1975) Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 88:229-44 CrossRef
    40. Cardona S, Eck A, Cassellas M et al (2012) Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol 12:158 CrossRef
    41. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307:80-6 CrossRef
    42. Nyman M (2000) Fermentation and bulking capacity of indigestible carbohydrates: the case of inulin and oligofructose. Br J Nutr 87(Suppl 2):S163–S168
  • 作者单位:Marcus C. de Goffau (1)
    Susana Fuentes (2)
    Bartholomeus van den Bogert (2) (3)
    Hanna Honkanen (4)
    Willem M. de Vos (2) (5)
    Gjalt W. Welling (1)
    Heikki Hy?ty (4) (6)
    Hermie J. M. Harmsen (1)

    1. Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, HPC EB80, 9713 GZ, Groningen, The Netherlands
    2. Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
    3. Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
    4. Department of Virology, Medical School, University of Tampere, Tampere, Finland
    5. Department of Bacteriology and Immunology, Medical School, University of Helsinki, Helsinki, Finland
    6. Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
  • ISSN:1432-0428
文摘
Aims/hypothesis Recent studies indicate that an aberrant gut microbiota is associated with the development of type 1 diabetes, yet little is known about the microbiota in children who have diabetes at an early age. To this end, the microbiota of children aged 1-?years with new-onset type 1 diabetes was compared with the microbiota of age-matched healthy controls. Methods A deep global analysis of the gut microbiota composition was established by phylogenetic microarray analysis using a Human Intestinal Tract Chip (HITChip). Results Principal component analyses highlighted the importance of age when comparing age-matched pairs. In pairs younger than 2.9?years, the combined abundance of the class Bacilli (notably streptococci) and the phylum Bacteroidetes was higher in diabetic children, whereas the combined abundance of members of Clostridium clusters IV and XIVa was higher in the healthy controls. Controls older than 2.9?years were characterised by a higher fraction of butyrate-producing species within Clostridium clusters IV and XIVa than was seen in the corresponding diabetic children or in children from the younger age groups, while the diabetic children older than 2.9?years could be differentiated by having an increased microbial diversity. Conclusions/interpretation The results from both age groups suggest that non-diabetic children have a more balanced microbiota in which butyrate-producing species appear to hold a pivotal position.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700