Identification of an antibody fragment specific for androgen-dependent prostate cancer cells
详细信息    查看全文
  • 作者:Ryan M Williams (1) (2)
    Cyrus J Hajiran (3)
    Sara Nayeem (1)
    Letha J Sooter (1)

    1. Department of Basic Pharmaceutical Sciences
    ; West Virginia University ; 1 Medical Center Drive ; PO Box 9530 ; Morgantown ; WV ; 26506 ; USA
    2. Memorial Sloan Kettering Cancer Center
    ; Molecular Pharmacology & Chemistry Program ; 1275 York Ave. ; New York ; NY ; 10065 ; USA
    3. Department of Biology
    ; West Virginia University ; 53 Campus Drive ; PO Box 6057 ; Morgantown ; WV ; 26506 ; USA
  • 关键词:Prostate cancer ; Antibody fragment ; scFv ; Library screening ; Yeast
  • 刊名:BMC Biotechnology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:880 KB
  • 参考文献:1. Siegel, R, Ma, J, Zou, Z, Jemal, A (2014) Cancer statistics, 2014. CA Cancer J Clin 64: pp. 9-29 CrossRef
    2. Chou, R, Dana, T, Bougatsos, C, Fu, R, Blazina, I, Gleitsmann, K, Rugge, JB (2011) Treatments for localized prostate cancer: systematic review to update the 2002 US preventive services task force recommendation. Evid Synthesis 91: pp. 12-05161-EF-1
    3. Yao, SL, Lu-Yao, G (1999) Population-based study of relationships between hospital volume of prostatectomies, patient outcomes, and length of hospital stay. J Natl Cancer Inst 91: pp. 1950-1956 CrossRef
    4. Feldman, BJ, Feldman, D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: pp. 34-45 CrossRef
    5. Yagoda, A, Petrylak, D (2006) Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer. Cancer 71: pp. 1098-1109 CrossRef
    6. Extra, JM, Rousseau, F, Bruno, R, Clavel, M, Le Bail, N, Marty, M (1993) Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res 53: pp. 1037-1042
    7. Pienta, KJ (2001) Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol 28: pp. 3-7 CrossRef
    8. Pienta, KJ, Smith, DC (2005) Advances in prostate cancer chemotherapy: a New Era Begins. CA Cancer J Clin 55: pp. 300-318 CrossRef
    9. Lin, K, Croswell, JM, Koenig, H, Lam, C, Maltz, A (2011) Prostate-specific antigen-based screening for prostate cancer: an evidence update for the US preventive services task force. Evid Synthesis 90: pp. 12-05160-EF-1
    10. Chou, R, Croswell, JM, Dana, T, Bougatsos, C, Blazina, I, Fu, R, Gleitsmann, K, Koenig, HC, Lam, C, Maltz, A (2011) Screening for prostate cancer: a review of the evidence for the US Preventive Services Task Force. Ann Intern Med 155: pp. 762 CrossRef
    11. Moyer, VA (2012) Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 157: pp. 120-134 CrossRef
    12. Barry, MJ (2009) Screening for prostate cancer鈥攖he controversy that refuses to die. N Engl J Med 360: pp. 1351-1354 CrossRef
    13. Pollack, CE, Noronha, G, Green, GE, Bhavsar, NA, Carter, HB (2012) Primary care Providers鈥?response to the US preventive services task force draft recommendations on screening for prostate cancer. Arch Intern Med 172: pp. 668-670 CrossRef
    14. Woolf, SH (1995) Screening for prostate cancer with prostate-specific antigen鈥攁n examination of the evidence. N Engl J Med 333: pp. 1401-1405 CrossRef
    15. Thompson, IM, Chi, C, Ankerst, DP, Goodman, PJ, Tangen, CM, Lippman, SM, Lucia, MS, Parnes, HL, Coltman, CA (2006) Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J Natl Cancer Inst 98: pp. 1128-1133 CrossRef
    16. Williams, R, Naz, R (2010) Novel biomarkers and therapeutic targets for prostate cancer. Front Biosci (Schol Ed) 2: pp. 677-684 CrossRef
    17. Makarov, DV, Loeb, S, Getzenberg, RH, Partin, AW (2009) Biomarkers for Prostate Cancer. Annual Review of Medicine, Volume 60. Annual Reviews, Palo Alto, pp. 139-151
    18. Prensner, JR, Rubin, MA, Wei, JT, Chinnaiyan AM: Beyond, PSA (2012) The next generation of prostate cancer biomarkers. Sci Transl Med 4: pp. 127rv3 CrossRef
    19. Morris, KN, Jensen, KB, Julin, CM, Weil, M, Gold, L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A 95: pp. 2902-2907 CrossRef
    20. Guo, KT, Ziemer, G, Paul, A, Wendel, HP (2008) CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9: pp. 668-678 CrossRef
    21. Huse, WD, Sastry, L, Iverson, SA, Kang, AS, Alting-Mees, M, Burton, DR, Benkovic, SJ, Lerner, RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: pp. 1275-1281 CrossRef
    22. Gunneriusson, E, Samuelson, P, Uhlen, M, Nygren, PA, Stahl, S (1996) Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol 178: pp. 1341-1346
    23. Boder, ET, Wittrup, KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15: pp. 553-557 CrossRef
    24. Figini, M, Obici, L, Mezzanzanica, D, Griffiths, A, Colnaghi, MI, Winter, G, Canevari, S (1998) Panning phage antibody libraries on cells: isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res 58: pp. 991-996
    25. Jakobsen, CG, Rasmussen, N, Laenkholm, AV, Ditzel, HJ (2007) Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Cancer Res 67: pp. 9507-9517 CrossRef
    26. Yu, B, Ni, M, Li, WH, Lei, P, Xing, W, Xiao, DW, Huang, Y, Tang, ZJ, Zhu, HF, Shen, GX (2005) Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library. World J Gastroenterol 11: pp. 3985-3989
    27. Wang, XX, Shusta, EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304: pp. 30-42 CrossRef
    28. Feldhaus, MJ, Siegel, RW, Opresko, LK, Coleman, JR, Feldhaus, JM, Yeung, YA, Cochran, JR, Heinzelman, P, Colby, D, Swers, J, Graff, C, Wiley, HS, Wittrup, KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21: pp. 163-170 CrossRef
    29. Jung, ST, Jeong, KJ, Iverson, BL, Georgiou, G (2007) Binding and enrichment of Escherichia coli spheroplasts expressing inner membrane tethered scFv antibodies on surface immobilized antigens. Biotechnol Bioeng 98: pp. 39-47 CrossRef
    30. Qiu, J-K, Jung, S-T, Georgiou, G, Hang, H-Y (2010) Enrichment of Escherichia coli spheroplasts displaying scFv antibodies specific for antigens expressed on the human cell surface. Appl Microbiol Biotechnol 88: pp. 1385-1391 CrossRef
    31. Mazor, Y, Van Blarcom, T, Carroll, S, Georgiou, G (2010) Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J 277: pp. 2291-2303 CrossRef
    32. Colcher, D, Pavlinkova, G, Beresford, G, Booth, B, Choudhury, A, Batra, S (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42: pp. 225-241
    33. Brockmann, E-C, Cooper, M, Str枚msten, N, Vehni盲inen, M, Saviranta, P (2005) Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 296: pp. 159-170 CrossRef
    34. Asano, R, Watanabe, Y, Kawaguchi, H, Fukazawa, H, Nakanishi, T, Umetsu, M, Hayashi, H, Katayose, Y, Unno, M, Kudo, T (2007) Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem 282: pp. 27659-27665 CrossRef
    35. B枚ldicke, T, Tesar, M, Griesel, C, Rohde, M, Gr枚ne, HJ, Waltenberger, J, Kollet, O, Lapidot, T, Yayon, A, Weich, H (2001) Anti-VEGFR-2 scFvs for Cell Isolation. Single鈥扖hain Antibodies Recognizing the Human Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2/flk-1) on the Surface of Primary Endothelial Cells and Preselected CD34+ Cells from Cord Blood. Stem Cells 19: pp. 24-36 CrossRef
    36. Benedict, CA, MacKrell, AJ, Anderson, WF (1997) Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods 201: pp. 223-231 CrossRef
    37. Schier, R, Bye, J, Apell, G, McCall, A, Adams, GP, Malmqvist, M, Weiner, LM, Marks, JD (1996) Isolation of High-affinity Monomeric Human Anti-c-erbB-2 Single chain Fv Using Affinity-driven Selection. J Mol Biol 255: pp. 28-43 CrossRef
    38. Adams, GP, Schier, R, Marshall, K, Wolf, EJ, McCall, AM, Marks, JD, Weiner, LM (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res 58: pp. 485-490
    39. Jackson, H, Bacon, L, Pedley, R, Derbyshire, E, Field, A, Osbourn, J, Allen, D (1998) Antigen specificity and tumour targeting efficiency of a human carcinoembryonic antigen-specific scFv and affinity-matured derivatives. Br J Cancer 78: pp. 181 CrossRef
    40. Boder, ET, Midelfort, KS, Wittrup, KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci 97: pp. 10701-10705 CrossRef
    41. He, J, Wang, Y, Feng, J, Zhu, X, Lan, X, Iyer, AK, Zhang, N, Seo, Y, VanBrocklin, HF, Liu, B (2010) Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med 51: pp. 427-432 CrossRef
    42. Gao, C, Mao, S, Ronca, F, Zhuang, S, Quaranta, V, Wirsching, P, Janda, KD (2003) De novo identification of tumor-specific internalizing human antibody鈥搑eceptor pairs by phage-display methods. J Immunol Methods 274: pp. 185-197 CrossRef
    43. Nielsen, UB, Kirpotin, DB, Pickering, EM, Drummond, DC, Marks, JD (2006) A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol 7: pp. 24 CrossRef
    44. Schrama, D, Reisfeld, RA, Becker, JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5: pp. 147-159 CrossRef
    45. Zeng, L, Rowland, RG, Lele, SM, Kyprianou, N (2004) Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kip1, and Smad4 in benign, premalignant, and malignant human prostate. Hum Pathol 35: pp. 290-297 CrossRef
    46. Chen, W, Pang, B, Yang, B, Zhou, J, Sun, Y (2011) Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells. Chin Med J Beijing 124: pp. 3806-3809
    47. Chakrabarti, R, Robles, LD, Gibson, J, Muroski, M (2002) Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. Cancer Genet Cytogenet 139: pp. 115-125 CrossRef
    48. Amler, LC, Agus, DB, LeDuc, C, Sapinoso, ML, Fox, WD, Kern, S, Lee, D, Wang, V, Leysens, M, Higgins, B, Martin, J, Gerald, W, Dracopoli, N, Cordon-Cardo, C, Scher, HI, Hampton, GM (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60: pp. 6134-6141
    49. Karan, D, Kelly, DL, Rizzino, A, Lin, MF, Batra, SK (2002) Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis 23: pp. 967-976 CrossRef
    50. Chen, Q, Watson, JT, Marengo, SR, Decker, KS, Coleman, I, Nelson, PS, Sikes, RA (2006) Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Cancer Lett 244: pp. 274-288 CrossRef
    51. Yang, M, Loda, M, Sytkowski, AJ (1998) Identification of genes expressed differentially by LNCaP or PC-3 prostate cancer cell lines. Cancer Res 58: pp. 3732-3735
    52. Liu, Z, Marquez, M, Nilsson, S, Holmberg, AR (2009) Comparison of protein expression in two prostate cancer cell-lines, LNCaP and DU145, after treatment with somatostatin. Oncol Rep 22: pp. 1451 CrossRef
    53. Aalinkeel, R, Nair, MPN, Sufrin, G, Mahajan, SD, Chadha, KC, Chawda, RP, Schwartz, SA (2004) Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 64: pp. 5311-5321 CrossRef
    54. Okamura, K, Koike, H, Matsui, H, Suzuki, K (2008) Gene Expression Profiles of Prostate Cancer Cell Lines, LNCaP, PC-3 and DU-145, Assessed by cDNA Microarray. Kitakanto Med J 58: pp. 363-369 CrossRef
    55. R茅role, AL, Gobbo, J, De Thonel, A, Schmitt, E, de Barros, JPP, Hammann, A, Lanneau, D, Fourmaux, E, Deminov, O, Micheau, O (2011) Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res 71: pp. 484-495 CrossRef
    56. Robert, R, Jacobin-Valat, MJ, Daret, D, Miraux, S, Nurden, AT, Franconi, JM, Clofent-Sanchez, G (2006) Identification of human scFvs targeting atherosclerotic lesions. J Biol Chem 281: pp. 40135-40143 CrossRef
    57. Berezovski, MV, Lechmann, M, Musheev, MU, Mak, TW, Krylov, SN (2008) Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 130: pp. 9137-9143 CrossRef
    58. Ni, X, Zhang, Y, Ribas, J, Chowdhury, WH, Castanares, M, Zhang, Z, Laiho, M, DeWeese, TL, Lupold, SE (2011) Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 121: pp. 2383-2390 CrossRef
    59. Senter, PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13: pp. 235-244 CrossRef
    60. Regino, C, Wong, K, Milenic, D, Holmes, E, Garmestani, K, Choyke, P, Brechbiel, M (2009) Preclinical evaluation of a monoclonal antibody (3C6) specific for prostate-specific membrane antigen. Curr Radiopharm 2: pp. 9-17 CrossRef
    61. Sievers, EL, Linenberger, M (2001) Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol 13: pp. 522-527 CrossRef
    62. Stebbing, J, Copson, E, O鈥橰eilly, S (2000) Herceptin (trastuzamab) in advanced breast cancer. Cancer Treat Rev 26: pp. 287-290 CrossRef
    63. Kanter, G, Yang, J, Voloshin, A, Levy, S, Swartz, JR, Levy, R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109: pp. 3393-3399 CrossRef
    64. Begent, R, Chester, K (1997) Single-chain Fv antibodies for targeting cancer therapy. Biochem Soc Trans 25: pp. 715-716
    65. Clark, M (2000) Antibody humanization: a case of the 鈥楨mperor鈥檚 new clothes鈥?. Immunol Today 21: pp. 397-402 CrossRef
    66. Els盲sser-Beile, U, Reischl, G, Wiehr, S, B眉hler, P, Wolf, P, Alt, K, Shively, J, Judenhofer, MS, Machulla, HJ, Pichler, BJ (2009) PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 50: pp. 606-611 CrossRef
    67. Veiseh, O, Gunn, JW, Zhang, M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62: pp. 284-304 CrossRef
    68. Johnston, WW, Szpak, CA, Lottich, SC, Thor, A, Schlom, J (1986) Use of a monoclonal antibody (B72. 3) as a novel immunohistochemical adjunct for the diagnosis of carcinomas in fine needle aspiration biopsy specimens. Hum Pathol 17: pp. 501-513 CrossRef
    69. Nagrath, S, Sequist, LV, Maheswaran, S, Bell, DW, Irimia, D, Ulkus, L, Smith, MR, Kwak, EL, Digumarthy, S, Muzikansky, A (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450: pp. 1235-1239 CrossRef
    70. Horoszewicz, JS, Leong, SS, Kawinski, E, Karr, JP, Rosenthal, H, Chu, TM, Mirand, EA, Murphy, GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43: pp. 1809-1818
    71. Wang, M, Liu, A, Garcia, FU, Rhim, JS, Stearns, ME (1999) Growth of HPV-18 immortalized human prostatic intraepithelial neoplasia cell lines. Influence of IL-10, follistatin, activin-A, and DHT. Int J Oncol 14: pp. 1185-1195
    72. Hayward, S, Dahiya, R, Cunha, G, Bartek, J, Deshpande, N, Narayan, P (1995) Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro CellDev Biol Anim 31: pp. 14-24 CrossRef
    73. Jiang, M, Strand, DW, Fernandez, S, He, Y, Yi, Y, Birbach, A, Qiu, Q, Schmid, J, Tang, DG, Hayward, SW (2009) Functional remodeling of benign human prostatic tissues in vivo by spontaneously immortalized progenitor and intermediate cells. Stem Cells 28: pp. 344-356
    74. Stone, K, Mickey, D, Wunderli, H, Mickey, G, Paulson, D (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: pp. 274-281 CrossRef
    75. Kaighn, M, Narayan, KS, Ohnuki, Y, Lechner, J, Jones, L (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: pp. 16-23
    76. Bello, D, Webber, M, Kleinman, H, Wartinger, D, Rhim, J (1997) Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinog 18: pp. 1215-1223 CrossRef
    77. Silver, DA, Pellicer, I, Fair, WR, Heston, W, Cordon-Cardo, C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3: pp. 81-85
    78. Langan, TJ, Nyakubaya, VT, Casto, LD, Dolan, TD, Archer-Hartmann, SA, Yedlapalli, SL, Sooter, LJ, Holland, LA (2012) Assessment of aptamer-steroid binding using stacking-enhanced capillary electrophoresis. Electrophoresis 33: pp. 866-869 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background Prostate cancer is the most-diagnosed non-skin cancer among males in the US, and the second leading cause of cancer-related death. Current methods of treatment and diagnosis are not specific for the disease. This work identified an antibody fragment that binds selectively to a molecule on the surface of androgen-dependent prostate cancer cells but not benign prostatic cells. Results Antibody fragment identification was achieved using a library screening and enrichment strategy. A library of 109 yeast-displayed human non-immune antibody fragments was enriched for those that bind to androgen-dependent prostate cancer cells, but not to benign prostatic cells or purified prostate-specific membrane antigen (PSMA). Seven rounds of panning and fluorescence-activated cell sorting (FACS) screening yielded one antibody fragment identified from the enriched library. This molecule, termed HiR7.8, has a low-nanomolar equilibrium dissociation constant (Kd) and high specificity for androgen-dependent prostate cancer cells. Conclusions Antibody fragment screening from a yeast-displayed library has yielded one molecule with high affinity and specificity. With further pre-clinical development, it is hoped that the antibody fragment identified using this screening strategy will be useful in the specific detection of prostate cancer and in targeted delivery of therapeutic agents for increased efficacy and reduced side effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700