Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins
详细信息    查看全文
  • 作者:Dominic S. Alonzi (1)
    Nikolay V. Kukushkin (1)
    Sarah A. Allman (1)
    Zalihe Hakki (2)
    Spencer J. Williams (2)
    Lorna Pierce (1)
    Raymond A. Dwek (1)
    Terry D. Butters (1)
  • 关键词:ER ; associated degradation ; Free oligosaccharides ; N ; glycosylation ; Quality control ; MAN2C1 ; EDEM
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:70
  • 期:15
  • 页码:2799-2814
  • 全文大小:1165KB
  • 参考文献:1. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631-64 CrossRef
    2. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515-23 j.sbi.2009.06.004">CrossRef
    3. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944-57 CrossRef
    4. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361-73 j.cell.2006.05.043">CrossRef
    5. Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849-54 CrossRef
    6. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349-59 j.cell.2006.05.045">CrossRef
    7. Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272-82 CrossRef
    8. Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579-91 j.cell.2010.10.028">CrossRef
    9. Suzuki T (2007) Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 18:762-69 j.semcdb.2007.09.010">CrossRef
    10. Alonzi DS, Neville DC, Lachmann RH, Dwek RA, Butters TD (2008) Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition. Biochem J 409:571-80 CrossRef
    11. Kukushkin NV, Alonzi DS, Dwek RA, Butters TD (2011) Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase. Biochem J 438:133-42 CrossRef
    12. Mellor HR, Neville DC, Harvey DJ, Platt FM, Dwek RA, Butters TD (2004) Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides. Biochem J 381:867-75 CrossRef
    13. Moore SE, Spiro RG (1994) Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem 269:12715-2721
    14. Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61:1025-041 CrossRef
    15. Moore SE (1999) Oligosaccharide transport: pumping waste from the ER into lysosomes. Trends Cell Biol 9:441-46 CrossRef
    16. Bernon C, Carre Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S (2011) Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 21:363-75 CrossRef
    17. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364-369 CrossRef
    18. Saint-Pol A, Bauvy C, Codogno P, Moore SE (1997) Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J Cell Biol 136:45-9 jcb.136.1.45">CrossRef
    19. Saint-Pol A, Codogno P, Moore SE (1999) Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J Biol Chem 274:13547-3555 jbc.274.19.13547">CrossRef
    20. Gross V, Tran-Thi TA, Schwarz RT, Elbein AD, Decker K, Heinrich PC (1986) Different effects of the glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine on the glycosylation of rat alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein. Biochem J 236:853-60
    21. Lodish HF, Kong N (1984) Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol 98:1720-729 jcb.98.5.1720">CrossRef
    22. Lubas WA, Spiro RG (1987) Golgi endo-alpha-d -mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J Biol Chem 262:3775-781
    23. Moore SE, Bauvy C, Codogno P (1995) Endoplasmic reticulum-to-cytosol transport of free polymannose oligosaccharides in permeabilized HepG2 cells. EMBO J 14:6034-042
    24. Karaivanova VK, Luan P, Spiro RG (1998) Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology 8:725-30 CrossRef
    25. Neville DC, Coquard V, Priestman DA, Te Vruchte DJ, Sillence DJ, Dwek RA, Platt FM, Butters TD (2004) Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Anal Biochem 331:275-82 j.ab.2004.03.051">CrossRef
    26. Olafson RW, Thomas JR, Ferguson MA, Dwek RA, Chaudhuri M, Chang KP, Rademacher TW (1990) Structures of the N-linked oligosaccharides of Gp63, the major surface glycoprotein, from Leishmania mexicana amazonensis. J Biol Chem 265:12240-2247
    27. Karlsson GB, Butters TD, Dwek RA, Platt FM (1993) Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem 268:570-76
    28. Gao N, Lehrman MA (2002) Analyses of dolichol pyrophosphate–linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 12:353-60 CrossRef
    29. Misaghi S, Pacold ME, Blom D, Ploegh HL, Korbel GA (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 11:1677-687 j.chembiol.2004.11.010">CrossRef
    30. Chantret I, Moore SE (2008) Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 18:210-24 CrossRef
    31. Karaivanova VK, Spiro RG (2000) Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins. Glycobiology 10:727-35 CrossRef
    32. Kijima Y, Ogunbunmi E, Fleischer S (1991) Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J Biol Chem 266:22912-2918
    33. Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266:17067-7071
    34. Ying M, Sannerud R, Flatmark T, Saraste J (2002) Colocalization of Ca2+-ATPase and GRP94 with p58 and the effects of thapsigargin on protein recycling suggest the participation of the pre-Golgi intermediate compartment in intracellular Ca2+ storage. Eur J Cell Biol 81:469-83 CrossRef
    35. Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061-070 jcb.153.5.1061">CrossRef
    36. Caldwell SR, Hill KJ, Cooper AA (2001) Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 276:23296-3303 jbc.M102962200">CrossRef
    37. Ahner A, Brodsky JL (2004) Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 14:474-78 j.tcb.2004.07.013">CrossRef
    38. Butters TD, Alonzi DS, Kukushkin NV, Ren Y, Bleriot Y (2009) Novel mannosidase inhibitors probe glycoprotein degradation pathways in cells. Glycoconj J 26:1109-116 CrossRef
    39. Durrant C, Moore SE (2002) Perturbation of free oligosaccharide trafficking in endoplasmic reticulum glucosidase I-deficient and castanospermine-treated cells. Biochem J 365:239-47 CrossRef
    40. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stutz AE, Butters TD, Williams SJ, Davies GJ (2012) Structural and mechanistic insight into N-glycan processing by endo-alpha-mannosidase. Proc Natl Acad Sci USA 109:781-86 CrossRef
    41. Ardron H, Butters TD, Platt FM, Wormald MR, Dwek RA, Fleet GWJ, Jacob GS (1993) Synthesis of 1,5-dideoxy-3-O-(alpha-d -mannoyranosyl)-1,5-imino-d -mannitol and 1,5-dideoxy-3-O -(alpha-d -glucopyranosyl)-1,5-imino-d -mannitol: powerful inhibitors of endomannosidase. Tetrahedron Asymmetry 4:2011-024 CrossRef
    42. Marriott AC (2005) Complete genome sequences of Chandipura and Isfahan vesiculoviruses. Arch Virol 150:671-80 CrossRef
    43. Lodish HF, Kong N, Snider M, Strous GJ (1983) Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304:80-3 CrossRef
    44. Zilberstein A, Snider MD, Porter M, Lodish HF (1980) Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell 21:417-27 CrossRef
    45. Reiterer V, Nyfeler B, Hauri HP (2010) Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Traffic 11:1044-055 j.1600-0854.2010.01078.x">CrossRef
    46. Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159-72 jcb.200809198">CrossRef
    47. Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870-77 j.molcel.2008.11.017">CrossRef
    48. Hosokawa N, Wada I, Natsuka Y, Nagata K (2006) EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cells 11:465-76 j.1365-2443.2006.00957.x">CrossRef
    49. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172:383-93 jcb.200507057">CrossRef
    50. Ron E, Shenkman M, Groisman B, Izenshtein Y, Leitman J, Lederkremer GZ (2011) Bypass of glycan-dependent glycoprotein delivery to ERAD by upregulated EDEM1. Mol Biol Cell 22:3945-954 CrossRef
    51. Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 155:355-68 jcb.200106123">CrossRef
    52. Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41-2 jcb.200309132">CrossRef
    53. Arvan P, Zhao X, Ramos-Castaneda J, Chang A (2002) Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3:771-80 j.1600-0854.2002.31102.x">CrossRef
  • 作者单位:Dominic S. Alonzi (1)
    Nikolay V. Kukushkin (1)
    Sarah A. Allman (1)
    Zalihe Hakki (2)
    Spencer J. Williams (2)
    Lorna Pierce (1)
    Raymond A. Dwek (1)
    Terry D. Butters (1)

    1. Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
    2. School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
文摘
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700