Some Calderón–Zygmund kernels and their relations to Wolff capacities and rectifiability
详细信息    查看全文
  • 作者:Vasilis Chousionis ; Laura Prat
  • 刊名:Mathematische Zeitschrift
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:282
  • 期:1-2
  • 页码:435-460
  • 全文大小:603 KB
  • 参考文献:1.Calderón, A.C.: Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA. 74(4), 1324–1327 (1977)CrossRef
    2.Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundl. Math. Wiss., vol. 314. Springer, Berlin (1996)CrossRef
    3.Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Calderón–Zygmund kernels and rectifiability in the plane. Adv. Math. 231(1), 535–568 (2012)MathSciNet CrossRef
    4.Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Capacities associated with Calderón–Zygmund kernels. Potential Anal. 38(3), 913–949 (2013)MathSciNet CrossRef
    5.David, G.: Unrectifiable 1-sets have vanishing analytic capacity. Rev. Mat. Iberoam. 14(2), 369–479 (1998)CrossRef
    6.David, G., Semmes, S.: Singular Integrals and rectifiable sets in \(\mathbb{R}^{n}\) : Au-delà des graphes lipschitziens. Astérisque 193, Société Mathématique de France (1991)
    7.David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993)CrossRef
    8.Duoandikoetxea, J.: Fourier Analysis. American Mathematical Society, Providence, RI (2001)
    9.Eiderman, V., Nazarov, F., Volberg, A.: Vector-valued Riesz potentials: Cartan-type estimates and related capacities. Proc. Lond. Math. Soc. 101(3), 727–758 (2010)MathSciNet CrossRef
    10.Garnett, J., Verdera, J.: Analytic capacity, bilipschitz maps and Cantor sets. Math. Res. Lett. 10(4), 515–522 (2003)MathSciNet CrossRef
    11.Garnett, J., Prat, L., Tolsa, X.: Lipschitz harmonic capacity and bilipschitz images of Cantor sets. Math. Res. Lett. 13(5–6), 865–884 (2006)MathSciNet CrossRef
    12.Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)CrossRef
    13.Lyons, R., Zumbrun, K.: Homogeneous partial derivatives of radial functions. Proc. Am. Math. Soc. 121(1), 315–316 (1994)MathSciNet CrossRef
    14.Mattila, P., Melnikov, M., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. Math. (2) 144(1), 127–136 (1996)MathSciNet CrossRef
    15.Mattila, P., Paramonov, P.V.: On geometric properties of harmonic \(\text{ Lip }_1\) -capacity. Pac. J. Math. 171(2), 469–491 (1995)MathSciNet CrossRef
    16.Mateu, J., Prat, L., Verdera, J.: The capacity associated to signed Riesz kernels, and Wolff potentials. J. Reine Angew. Math. 578, 201–223 (2005)MathSciNet
    17.Mateu, J., Prat, L., Verdera, J.: Potential theory of scalar Riesz kernels. Indiana Univ. Math. J. 60(4), 1319–1361 (2011)MathSciNet CrossRef
    18.Maz’ya, V.G., Shaposhnikova, T.O.: Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics 23. Pitman (Advanced Publishing Program), Boston, MA (1985)
    19.Melnikov, M.S.: Analytic capacity: discrete approach and curvature of measure. Sb. Math. 186(6), 827–846 (1995)MathSciNet CrossRef
    20.Melnikov, M.S., Verdera, J.: A geometric proof of the \(L^2\) boundedness of the Cauchy integral on Lipschitz graphs. Int. Math. Res. Not. 7, 325–331 (1995)MathSciNet CrossRef
    21.Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math. 213(2), 237–321 (2014)MathSciNet CrossRef
    22.Prat, L.: Potential theory of signed Riesz kernels: capacity and Hausdorff measure. Int. Math. Res. Not. 19, 937–981 (2004)MathSciNet CrossRef
    23.Prat, L.: Null sets for the capacity associated to Riesz kernels. Ill. J. Math. 48(3), 953–963 (2004)MathSciNet
    24.Prat, L.: On the semiadditivity of the capacities associated with signed vector valued Riesz kernels. Trans. Am. Math. Soc. 364(11), 5673–5691 (2012)MathSciNet CrossRef
    25.Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
    26.Tolsa, X.: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190(1), 105–149 (2003)MathSciNet CrossRef
    27.Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. (2) 162(3), 1243–1304 (2005)MathSciNet CrossRef
  • 作者单位:Vasilis Chousionis (1)
    Laura Prat (2)

    1. Department of Mathematics, University of Connecticut, 196 Auditorium Road U-3009, Storrs, CT, 06269-3009, USA
    2. Departament de Matemàtiques, Universitat Autònoma de Barcelona, Catalonia, Spain
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1823
文摘
We consider the Calderón–Zygmund kernels \(K_ {\alpha ,n}(x)=(x_i^{2n-1}/|x|^{2n-1+\alpha })_{i=1}^d\) in \({\mathbb R}^d\) for \(0<\alpha \le 1\) and \(n\in \mathbb {N}\). We show that, on the plane, for \(0<\alpha <1\), the capacity associated to the kernels \(K_{\alpha ,n}\) is comparable to the Riesz capacity \(C_{\frac{2}{3}(2-\alpha ),\frac{3}{2}}\) of non-linear potential theory. As consequences we deduce the semiadditivity and bilipschitz invariance of this capacity. Furthermore we show that for any Borel set \(E\subset {\mathbb R}^d\) with finite length the \(L^2(\mathcal {H}^1 \lfloor E)\)-boundedness of the singular integral associated to \(K_{1,n}\) implies the rectifiability of the set E. We thus extend to any ambient dimension, results previously known only in the plane. V. Chousionis is funded by the Academy of Finland Grant SA 267047. Also, partially supported by the ERC Advanced Grant 320501, while visiting Universitat Autònoma de Barcelona.L. Prat is supported by grants 2009SGR-000420 (Generalitat de Catalunya) and MTM2010-15657 (Spain).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700