Light dark matter, naturalness, and the radiative origin of the electroweak scale
详细信息    查看全文
  • 作者:Wolfgang Altmannshofer (1)
    William A. Bardeen (2)
    Martin Bauer (2) (3)
    Marcela Carena (2) (3) (4)
    Joseph D. Lykken (2)

    1. Perimeter Institute for Theoretical Physics
    ; Waterloo ; ON ; N2L 2Y5 ; Canada
    2. Theoretical Physics Department
    ; Fermi National Accelerator Laboratory ; Batavia ; IL ; 60510 ; U.S.A.
    3. Enrico Fermi Institute
    ; University of Chicago ; Chicago ; IL ; 60637 ; U.S.A.
    4. Kavli Institute for Cosmological Physics
    ; University of Chicago ; Chicago ; IL ; 60637 ; U.S.A.
  • 关键词:Higgs Physics ; Beyond Standard Model
  • 刊名:Journal of High Energy Physics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:2015
  • 期:1
  • 全文大小:1,015 KB
  • 参考文献:1. W.A. Bardeen, / On naturalness in the standard model, FERMILAB-CONF-95-391.
    2. S.R. Coleman and E.J. Weinberg, / Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, / Phys. Rev. D 7 (1973) 1888 [INSPIRE].
    3. E. Gildener and S. Weinberg, / Symmetry Breaking and Scalar Bosons, / Phys. Rev. D 13 (1976) 3333 [INSPIRE].
    4. R. Dermisek, T.H. Jung and H.D. Kim, / Coleman-Weinberg Higgs, / Phys. Rev. Lett. 113 (2014) 051801 [arXiv:1308.0891] [INSPIRE]. CrossRef
    5. C.T. Hill, / Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, / Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].
    6. R. Hempfling, / The Next-to-minimal Coleman-Weinberg model, / Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE]. CrossRef
    7. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, / A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, / Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].
    8. J.R. Espinosa, T. Konstandin, J.M. No and M. Quir贸s, / Some Cosmological Implications of Hidden Sectors, / Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].
    9. J.R. Espinosa and M. Quir贸s, / Novel Effects in Electroweak Breaking from a Hidden Sector, / Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
    10. S. Iso, N. Okada and Y. Orikasa, / Classically conformal B 鈭?/sup> / L extended Standard Model, / Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE]. CrossRef
    11. R. Foot, A. Kobakhidze and R.R. Volkas, / Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, / Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].
    12. L. Alexander-Nunneley and A. Pilaftsis, / The Minimal Scale Invariant Extension of the Standard Model, / JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE]. CrossRef
    13. S. Iso and Y. Orikasa, / TeV-scale B 鈭? / L model with a flat Higgs potential at the Planck scale: in view of the hierarchy problem, / PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
    14. C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, / Emergence of the Electroweak Scale through the Higgs Portal, / JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE]. CrossRef
    15. M. Farina, D. Pappadopulo and A. Strumia, / A modified naturalness principle and its experimental tests, / JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].
    16. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, / Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, / Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE]. CrossRef
    17. T. Hambye and A. Strumia, / Dynamical generation of the weak and Dark Matter scale, / Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
    18. C.D. Carone and R. Ramos, / Classical scale-invariance, the electroweak scale and vector dark matter, / Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].
    19. A. Farzinnia, H.-J. He and J. Ren, / Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, / Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE]. CrossRef
    20. V.V. Khoze, / Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, / JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE]. CrossRef
    21. C. Tamarit, / Running couplings with a vanishing scale anomaly, / JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE]. CrossRef
    22. E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, / Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, / Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].
    23. T.G. Steele, Z.-W. Wang, D. Contreras and R.B. Mann, / Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model, / Phys. Rev. Lett. 112 (2014) 171602 [arXiv:1310.1960] [INSPIRE]. CrossRef
    24. M. Hashimoto, S. Iso and Y. Orikasa, / Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale, / Phys. Rev. D 89 (2014) 016019 [arXiv:1310.4304] [INSPIRE].
    25. M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, / Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, / JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE]. CrossRef
    26. M. Hashimoto, S. Iso and Y. Orikasa, / Radiative Symmetry Breaking from Flat Potential in various U / (1)鈥? / models, / Phys. Rev. D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].
    27. S. Benic and B. Radovcic, / Electroweak breaking and Dark Matter from the common scale, / Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE]. CrossRef
    28. V.V. Khoze, C. McCabe and G. Ro, / Higgs vacuum stability from the dark matter portal, / JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE]. CrossRef
    29. A. Farzinnia and J. Ren, / Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector, / Phys. Rev. D 90 (2014) 015019 [arXiv:1405.0498] [INSPIRE].
    30. G.M. Pelaggi, / Predictions of a model of weak scale from dynamical breaking of scale invariance, arXiv:1406.4104 [INSPIRE].
    31. T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, / Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, / Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE]. CrossRef
    32. M. Lindner, S. Schmidt and J. Smirnov, / Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, / JHEP 10 (2014) 177 [arXiv:1405.6204] [INSPIRE]. CrossRef
    33. E.J. Chun, S. Jung and H.M. Lee, / Radiative generation of the Higgs potential, / Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE]. CrossRef
    34. H. Davoudiasl and I.M. Lewis, / Right-Handed Neutrinos as the Origin of the Electroweak Scale, / Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].
    35. K. Ishiwata, / Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, / Phys. Lett. B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE]. CrossRef
    36. J. Guo and Z. Kang, / Higgs Naturalness and Dark Matter Stability by Scale Invariance, arXiv:1401.5609 [INSPIRE].
    37. M.E. Machacek and M.T. Vaughn, / Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, / Nucl. Phys. B 222 (1983) 83 [INSPIRE]. CrossRef
    38. M.E. Machacek and M.T. Vaughn, / Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, / Nucl. Phys. B 236 (1984) 221 [INSPIRE]. CrossRef
    39. M.E. Machacek and M.T. Vaughn, / Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, / Nucl. Phys. B 249 (1985) 70 [INSPIRE]. CrossRef
    40. M.-x. Luo and Y. Xiao, / Two loop renormalization group equations in the standard model, / Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE]. CrossRef
    41. M.-x. Luo, H.-w. Wang and Y. Xiao, / Two loop renormalization group equations in general gauge field theories, / Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].
    42. M.-x. Luo and Y. Xiao, / Renormalization group equations in gauge theories with multiple U / (1) groups, / Phys. Lett. B 555 (2003) 279 [hep-ph/0212152] [INSPIRE]. CrossRef
    43. S.P. Martin, / Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, / Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].
    44. G. Degrassi et al., / Higgs mass and vacuum stability in the Standard Model at NNLO, / JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE]. CrossRef
    45. D. Buttazzo et al., / Investigating the near-criticality of the Higgs boson, / JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE]. CrossRef
    46. S. Weinberg and E. Witten, / Limits on Massless Particles, / Phys. Lett. B 96 (1980) 59 [INSPIRE]. CrossRef
    47. G. Dvali and C. Gomez, / Black Hole Macro-Quantumness, arXiv:1212.0765 [INSPIRE].
    48. S. Dubovsky, V. Gorbenko and M. Mirbabayi, / Natural Tuning: Towards A Proof of Concept, / JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE]. CrossRef
    49. G. Marques Tavares, M. Schmaltz and W. Skiba, / Higgs mass naturalness and scale invariance in the UV, / Phys. Rev. D 89 (2014) 015009 [arXiv:1308.0025] [INSPIRE].
    50. T. Hambye and M.H.G. Tytgat, / Electroweak symmetry breaking induced by dark matter, / Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE]. CrossRef
    51. T.E. Clark, B. Liu, S.T. Love and T. ter Veldhuis, / The Standard Model Higgs Boson-Inflaton and Dark Matter, / Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [INSPIRE].
    52. R.N. Lerner and J. McDonald, / Gauge singlet scalar as inflaton and thermal relic dark matter, / Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].
    53. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, / Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, / JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE]. CrossRef
    54. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, / Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, / JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE]. CrossRef
    55. O. Lebedev, / On Stability of the Electroweak Vacuum and the Higgs Portal, / Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE]. CrossRef
    56. B. Batell, S. Jung and H.M. Lee, / Singlet Assisted Vacuum Stability and the Higgs to Diphoton Rate, / JHEP 01 (2013) 135 [arXiv:1211.2449] [INSPIRE]. CrossRef
    57. J. Kubo, K.S. Lim and M. Lindner, / Electroweak Symmetry Breaking via QCD, / Phys. Rev. Lett. 113 (2014) 091604 [arXiv:1403.4262] [INSPIRE]. CrossRef
    58. M. Sher, / Electroweak Higgs Potentials and Vacuum Stability, / Phys. Rept. 179 (1989) 273 [INSPIRE]. CrossRef
    59. ATLAS collaboration, / Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb 鈭? / of proton-proton collision data, ATLAS-CONF-2014-009 (2014).
    60. CMS collaboration, / Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009.
    61. ATLAS collaboration, / Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS, / Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE]. CrossRef
    62. CMS collaboration, / Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, / Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
    63. CMS collaboration, / Search for an Invisible Higgs Boson, CMS-PAS-HIG-13-013.
    64. N. Zhou, Z. Khechadoorian, D. Whiteson and T.M.P. Tait, / Bounds on Invisible Higgs boson Decays from ttH Production, arXiv:1408.0011 [INSPIRE].
    65. CMS collaboration, / Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 / TeV, / Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
    66. S. Dawson et al., / Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
    67. CMS collaboration, / Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, / JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
    68. CMS collaboration, / Measurement of the properties of a Higgs boson in the four-lepton final state, / Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
    69. ATLAS collaboration, / Measurements of the properties of the Higgs-like boson in the WW (*) 鈫? / 鈩撐解創谓 decay channel with the ATLAS detector using 25fb 鈭? / of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
    70. ATLAS collaboration, / Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
    71. J. Fan, A. Katz, L. Randall and M. Reece, / Double-Disk Dark Matter, / Phys. Dark Univ. 2 (2013) 139 [arXiv:1303.1521] [INSPIRE]. CrossRef
    72. L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, / Dark Matter and Dark Radiation, / Phys. Rev. D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].
    73. J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, / Hidden Charged Dark Matter, / JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE]. CrossRef
    74. A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, / Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, / Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE]. CrossRef
    75. M. Markevitch et al., / Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, / Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE]. CrossRef
    76. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, / Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, / Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE]. CrossRef
    77. F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, / Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, / Phys. Rev. D 89 (2014) 063517 [arXiv:1310.3278] [INSPIRE].
    78. J. Giedt, A.W. Thomas and R.D. Young, / Dark matter, the CMSSM and lattice QCD, / Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE]. CrossRef
    79. A. Crivellin, M. Hoferichter and M. Procura, / Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects, / Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].
    80. XENON100 collaboration, E. Aprile et al., / Dark Matter Results from 225 Live Days of XENON100 Data, / Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE]. CrossRef
    81. LUX collaboration, D.S. Akerib et al., / First results from the LUX dark matter experiment at the Sanford Underground Research Facility, / Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE]. CrossRef
    82. XENON1T collaboration, E. Aprile, / The XENON1T Dark Matter Search Experiment, / Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE]. CrossRef
    83. D.C. Malling et al., / After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].
    84. R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, / New BBN limits on physics beyond the standard model from He-4, / Astropart. Phys. 23 (2005) 313 [astro-ph/0408033] [INSPIRE]. CrossRef
    85. Planck collaboration, P.A.R. Ade et al., / Planck 2013 results. XVI. Cosmological parameters, / Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE]. CrossRef
    86. U. Fran莽a, R.A. Lineros, J. Palacio and S. Pastor, / Probing interactions within the dark matter sector via extra radiation contributions, / Phys. Rev. D 87 (2013) 123521 [arXiv:1303.1776] [INSPIRE].
    87. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti P.D. Serpico, / Relic neutrino decoupling including flavor oscillations, / Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE]. CrossRef
    88. J.L. Feng et al., / Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, arXiv:1401.6085 [INSPIRE].
    89. B. Famaey, / Gaia and the dynamics of the Galaxy, / SF2A-2012: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, [arXiv:1209.5753] [INSPIRE].
    90. M. Trodden, / Electroweak baryogenesis, / Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE]. CrossRef
    91. D.E. Morrissey and M.J. Ramsey-Musolf, / Electroweak baryogenesis, / New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE]. CrossRef
    92. J.R. Espinosa, T. Konstandin and F. Riva, / Strong Electroweak Phase Transitions in the Standard Model with a Singlet, / Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE]. CrossRef
    93. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, / Singlet Higgs phenomenology and the electroweak phase transition, / JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE]. CrossRef
    94. H.H. Patel and M.J. Ramsey-Musolf, / Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology, / Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].
    95. E.J. Weinberg and A.-q. Wu, / Understanding complex perturbative effective potentials, / Phys. Rev. D 36 (1987) 2474 [INSPIRE].
    96. S.P. Martin, / Taming the Goldstone contributions to the effective potential, / Phys. Rev. D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].
    97. J. Elias-Miro, J.R. Espinosa and T. Konstandin, / Taming Infrared Divergences in the Effective Potential, / JHEP 08 (2014) 034 [arXiv:1406.2652] [INSPIRE]. CrossRef
    98. A. Andreassen, W. Frost and M.D. Schwartz, / Consistent Use of the Standard Model Effective Potential, arXiv:1408.0292 [INSPIRE].
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700