Self-intersection local times of random walks: exponential moments in subcritical dimensions
详细信息    查看全文
  • 作者:Mathias Becker (1)
    Wolfgang K?nig (1) (2)
  • 关键词:Self ; intersection local time ; Upper tail ; Donsker–Varadhan large deviations ; Variational formula ; Gagliardo–Nirenberg inequality ; 60K37 ; 60F10 ; 60J55
  • 刊名:Probability Theory and Related Fields
  • 出版年:2012
  • 出版时间:4 - December 2012
  • 年:2012
  • 卷:154
  • 期:3
  • 页码:585-605
  • 全文大小:272KB
  • 参考文献:1. Asselah A.: Large deviations estimates for self-intersection local times for simple random walk in ${\mathbb Z^3}$ . Probab. Theor. Relat. Fields 141, 19-5 (2008) CrossRef
    2. Asselah A.: Large deviation principle for self-intersection local times for random walk in ${{\mathbb Z^d}}$ with / d ≥?. ALEA Lat. Am. J. Probab. Math. Stat. 6, 281-22 (2009)
    3. Asselah A., Castell F.: Random walk in random scenery and self-intersection local times in dimensions / d ≥?. Probab. Theor. Relat. Fields 138, 1-2 (2007) CrossRef
    4. Braess D.: Finite Elements. Theory, Fast Solvers and Applications in Elasticity Theory (Finite Elemente. Theorie, schnelle L?ser und Anwendungen in der Elastizit?tstheorie), 4th revised and extended ed. (German). Springer, Berlin (2007)
    5. Bass R.F., Chen X.: Self-intersection local time: Critical exponent, large deviations, and laws of the iterated logarithm. Ann. Probab. 32, 3221-247 (2004) CrossRef
    6. Bass R.F., Chen X., Rosen J.: Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Elec. J. Probab. 11, 993-030 (2006)
    7. Becker M., Becker M., Becker M.: Moments and distribution of the local times of a transient random walk on ${\mathbb Z^d}$ . J. Theor. Prob. 22(2), 365-74 (2009) CrossRef
    8. Brydges D., van der Hofstad R., K?nig W.: Joint density for the local times of continuous-time Markov chains. Ann. Probab. 35(4), 1307-332 (2007) CrossRef
    9. Castell F.: Large deviations for intersection local time in critical dimension. Ann. Probab. 38(2), 927-53 (2010) CrossRef
    10. Chen X.: Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32, 3248-300 (2004) CrossRef
    11. Chen, X.: Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, AMS. Vol. 157, Providence, RI (2010)
    12. Chen X., Li W.: Large and moderate deviations for intersection local times. Probab. Theor. Relat. Fields 128, 213-54 (2004) CrossRef
    13. Cerny J.: Moments and distribution of the local times of a two-dimensional random walk, Stoch. Proc. Appl. 117, 262-70 (2007) CrossRef
    14. Dembo A., Zeitouni O.: Large Deviations Techniques and Applications, 2nd edition. Springer, New York (1998) CrossRef
    15. Donsker M., Varadhan S.R.S.: Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28, 525-65 (1975) CrossRef
    16. Donsker M., Varadhan S.R.S.: On the number of distinct sites visited by a random walk. Comm. Pure Appl. Math. 32, 721-47 (1979) CrossRef
    17. Freed K.F.: Polymers as self-avoiding walks. Ann. Probab. 9, 537-56 (1981) CrossRef
    18. Gantert N., K?nig W., Shi Z.: Annealed deviations for random walk in random scenery. Ann. Inst. Henri Poincaré (B) Prob. Stat. 43(1), 47-6 (2007) CrossRef
    19. G?rtner J., K?nig W.: The parabolic Anderson model. In: Deuschel, J.-D., Greven, A. (eds) Interacting Stochastic Systems, pp. 153-79. Springer, Berlin (2005) CrossRef
    20. G?rtner J., Molchanov S.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theor. Relat. Fields 111, 17-5 (1998) CrossRef
    21. de Gennes P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)
    22. van der Hofstad R., K?nig W., M?rters P.: The universality classes in the parabolic Anderson model. Commun. Math. Phys. 267(2), 307-53 (2006) CrossRef
    23. K?nig W.: Upper tails of self-intersection local times of random walks: survey of proof techniques. Actes rencontr. CIRM 2(1), 15-4 (2010) CrossRef
    24. Laurent, C.: Large deviations for self-intersection local times of stable random walks. Stoch. Proc. Appl. (to appear) arXiv: 1003.6060, preprint (2010)
    25. Laurent, C.: Large deviations for self-intersection local times in subcritical dimensions, arXiv: 1011.6486, preprint (2010)
    26. Le Gall J. F.: Propriétés d’intersection des marches aléatoires, I. Convergence vers le temps local d’intersection. Com. Math. Phys. 104, 471-07 (1986) CrossRef
    27. Matheron G., de Marsily G.: Is transport in porous media always diffusive? A counterexample. Water Res. Res. 16, 901-07 (1980) CrossRef
    28. McLeod K., Serrin J.: Uniqueness of solutions of semilinear Poisson equations. Proc. Natl. Acad. Sci. USA 78(11), 6592-595 (1981) CrossRef
    29. Varadhan, S.R.S.: Appendix to Euclidean quantum field theory, by Symanzik, K., In: Jost, R. (ed) Local Quantum Theory. Academic Press, New York (1969)
    30. Weinstein M.I.: Nonlinear Schr?dinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567-76 (1983) CrossRef
  • 作者单位:Mathias Becker (1)
    Wolfgang K?nig (1) (2)

    1. Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117, Berlin, Germany
    2. Technical University Berlin, Str. des 17. Juni 136, 10623, Berlin, Germany
  • ISSN:1432-2064
文摘
Fix p?>?1, not necessarily integer, with p(d ?2)?< d. We study the p-fold self-intersection local time of a simple random walk on the lattice ${\mathbb Z^d}$ up to time t. This is the p-norm of the vector of the walker’s local times, ?/em> t . We derive precise logarithmic asymptotics of the expectation of exp{θ t ||?/em> t || p } for scales θ t >?0 that are bounded from above, possibly tending to zero. The speed is identified in terms of mixed powers of t and θ t , and the precise rate is characterized in terms of a variational formula, which is in close connection to the Gagliardo–Nirenberg inequality. As a corollary, we obtain a large-deviation principle for ||?/em> t || p /(tr t ) for deviation functions r t satisfying ${t r_t\gg \mathbb E[||\ell_t||_p]}$ . Informally, it turns out that the random walk homogeneously squeezes in a t-dependent box with diameter of order ?t 1/d to produce the required amount of self-intersections. Our main tool is an upper bound for the joint density of the local times of the walk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700