MiR-126 Regulates Growth Factor Activities and Vulnerability to Toxic Insult in Neurons
详细信息    查看全文
  • 作者:Woori Kim ; Haneul Noh ; Yenarae Lee ; Jeha Jeon…
  • 关键词:MiR ; 126 ; Growth factors ; Neurotoxicity ; Neuroprotection ; PI3K/AKT signaling ;
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:95-108
  • 全文大小:1,429 KB
  • 参考文献:1.Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118C:1–18. doi:10.​1016/​j.​pneurobio.​2014.​02.​005 CrossRef
    2.Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3(3):169–178CrossRef PubMed
    3.Deak F, Sonntag WE (2012) Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 67(6):611–625. doi:10.​1093/​gerona/​gls118 CrossRef PubMed
    4.Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. doi:10.​1172/​JCI59903 CrossRef PubMed PubMedCentral
    5.Torres-Aleman I (2010) Toward a comprehensive neurobiology of IGF-I. Dev Neurobiol 70(5):384–396PubMed
    6.Kim B, Feldman EL (2012) Insulin resistance in the nervous system. Trends Endocrinol Metab 23(3):133–141. doi:10.​1016/​j.​tem.​2011.​12.​004 CrossRef PubMed PubMedCentral
    7.Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Abeta oligomers. J Clin Invest 122(4):1339–1353. doi:10.​1172/​JCI57256 CrossRef PubMed PubMedCentral
    8.de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559. doi:10.​1016/​j.​bcp.​2013.​12.​012 CrossRef PubMed PubMedCentral
    9.Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I (2012) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci 49(1):9–12. doi:10.​1016/​j.​mcn.​2011.​07.​008 CrossRef PubMed
    10.Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRef PubMed
    11.Heman-Ackah SM, Hallegger M, Rao MS, Wood MJ (2013) RISC in PD: the impact of microRNAs in Parkinson’s disease cellular and molecular pathogenesis. Front Mol Neurosci 6:40. doi:10.​3389/​fnmol.​2013.​00040 CrossRef PubMed PubMedCentral
    12.Ma L, Wei L, Wu F, Hu Z, Liu Z, Yuan W (2013) Advances with microRNAs in Parkinson’s disease research. Drug Des Devel Ther 7:1103–1113. doi:10.​2147/​DDDT.​S48500 PubMed PubMedCentral
    13.Sonntag KC, Wahlestedt C (2010) RNA mechanisms in CNS systems and disorders. Brain Res 1338:1–2CrossRef PubMed
    14.Sonntag KC, Woo TU, Krichevsky AM (2012) Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol 235(2):427–435. doi:10.​1016/​j.​expneurol.​2011.​11.​035 CrossRef PubMed PubMedCentral
    15.Du L, Pertsemlidis A (2011) Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation. J Mol Cell Biol 3(3):176–180CrossRef PubMed PubMedCentral
    16.Li N, Bates DJ, An J, Terry DA, Wang E (2011) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32(5):944–955. doi:10.​1016/​j.​neurobiolaging.​2009.​04.​020 CrossRef PubMed
    17.Liang R, Khanna A, Muthusamy S, Li N, Sarojini H, Kopchick JJ, Masternak MM, Bartke A, Wang E (2011) Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10(6):1080–1088. doi:10.​1111/​j.​1474-9726.​2011.​00751.​x CrossRef PubMed PubMedCentral
    18.Persengiev SP, Kondova II, Bontrop RE (2012) The impact of microRNAs on brain aging and neurodegeneration. Curr Gerontol Geriatr Res 2012:359369. doi:10.​1155/​2012/​359369 CrossRef PubMed PubMedCentral
    19.Fish JE, Srivastava D (2009) MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2 (52):pe1. doi:10.1126/scisignal.252pe1
    20.Ryu HS, Park SY, Ma D, Zhang J, Lee W (2011) The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 6(3):e17343CrossRef PubMed PubMedCentral
    21.Wei H, Wang C, Zhang C, Li P, Wang F, Zhang Z (2010) Comparative profiling of microRNA expression between neural stem cells and motor neurons in embryonic spinal cord in rat. Int J Dev Neurosci 28(6):545–551CrossRef PubMed
    22.Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18(1):130–138CrossRef PubMed PubMedCentral
    23.Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 5(2):e8898. doi:10.​1371/​journal.​pone.​0008898 CrossRef PubMed PubMedCentral
    24.Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420CrossRef PubMed PubMedCentral
    25.Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205. doi:10.​1007/​s00401-010-0756-0 CrossRef PubMed PubMedCentral
    26.Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, Willoughby D, Kenny PJ, Elsworth JD, Lawrence MS, Roth RH, Edbauer D, Kleiman RJ, Wahlestedt C (2012) MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A 109(8):3125–3130. doi:10.​1073/​pnas.​1113793109 CrossRef PubMed PubMedCentral
    27.Ziats MN, Rennert OM (2014) Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 19(7):848–852. doi:10.​1038/​mp.​2013.​93 CrossRef PubMed PubMedCentral
    28.Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35(7):1712–1721. doi:10.​1016/​j.​neurobiolaging.​2014.​01.​021 CrossRef PubMed PubMedCentral
    29.Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TU (2014) Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 28(1–2):53–69. doi:10.​3109/​01677063.​2014.​882918 CrossRef PubMed PubMedCentral
    30.Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8(11):1703–1718CrossRef PubMed PubMedCentral
    31.Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51(1):29–42CrossRef PubMed
    32.Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J, Kilbridge JF, Carlson EJ, Epstein CJ, Mobley WC (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci U S A 98(18):10439–10444CrossRef PubMed PubMedCentral
    33.Schulte-Herbruggen O, Jockers-Scherubl MC, Hellweg R (2008) Neurotrophins: from pathophysiology to treatment in Alzheimer’s disease. Curr Alzheimer Res 5(1):38–44CrossRef PubMed
    34.Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C, Ruano D, Gutierrez A, Vitorica J (2011) Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. J Biol Chem 286(21):18414–18425. doi:10.​1074/​jbc.​M110.​209718 CrossRef PubMed PubMedCentral
    35.O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204. doi:10.​1146/​annurev-neuro-061010-113613 CrossRef PubMed PubMedCentral
    36.Luo JJ, Wallace MS, Hawver DB, Kusiak JW, Wallace WC (2001) Characterization of the neurotrophic interaction between nerve growth factor and secreted alpha-amyloid precursor protein. J Neurosci Res 63(5):410–420CrossRef PubMed
    37.Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3 (77):77sr71. doi:10.​1126/​scitranslmed.​3002369
    38.Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322. doi:10.​1038/​nrneurol.​2009.​54 CrossRef PubMed
    39.Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. doi:10.​1124/​pr.​111.​005108 CrossRef PubMed PubMedCentral
    40.Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. doi:10.​1038/​nbt1358 CrossRef PubMed
    41.Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ (1999) Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol 39(4):536–546CrossRef PubMed
    42.Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 20(5):1533–1544. doi:10.​1091/​mbc.​E08-07-0777 CrossRef PubMed PubMedCentral
    43.O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: Impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653. doi:10.​1016/​j.​exger.​2013.​02.​025 CrossRef
    44.Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci : Off J Soc Neurosci 26(40):10129–10140. doi:10.​1523/​JNEUROSCI.​1202-06.​2006 CrossRef
    45.Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMed PubMedCentral
    46.Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875CrossRef PubMed
    47.Turner PR, Bourne K, Garama D, Carne A, Abraham WC, Tate WP (2007) Production, purification and functional validation of human secreted amyloid precursor proteins for use as neuropharmacological reagents. J Neurosci Methods 164(1):68–74CrossRef PubMed
    48.Blesch A, Conner J, Pfeifer A, Gasmi M, Ramirez A, Britton W, Alfa R, Verma I, Tuszynski MH (2005) Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol Ther 11(6):916–925CrossRef PubMed
    49.Nagahara AH, Bernot T, Moseanko R, Brignolo L, Blesch A, Conner JM, Ramirez A, Gasmi M, Tuszynski MH (2009) Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Exp Neurol 215(1):153–159CrossRef PubMed PubMedCentral
    50.Seo H, Sonntag KC, Isacson O (2004) Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 56(3):319–328CrossRef PubMed
    51.Seo H, Sonntag KC, Kim W, Cattaneo E, Isacson O (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS One 2:e238CrossRef PubMed PubMedCentral
    52.Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9(17):1155–1162. doi:10.​1038/​sj.​gt.​3301731 CrossRef PubMed
    53.Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725CrossRef PubMed PubMedCentral
    54.Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284CrossRef PubMed PubMedCentral
    55.Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47(11):939–946CrossRef PubMed PubMedCentral
    56.Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, Stins MF, Wang X, Dedhar S, Lo EH (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci U S A 105(21):7582–7587. doi:10.​1073/​pnas.​0801105105 CrossRef PubMed PubMedCentral
    57.Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40. doi:10.​3389/​fnmol.​2011.​00040 CrossRef PubMed PubMedCentral
    58.Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ, Ma D (2008) The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 377(1):136–140CrossRef PubMed
    59.Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T, Bai Y, Shen Y, Yuan W, Jing Q, Qin Y (2011) Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 351(1–2):157–164CrossRef PubMed
    60.Sato N, Takeda S, Uchio-Yamada K, Ueda H, Fujisawa T, Rakugi H, Morishita R (2011) Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Curr Aging Sci 4(2):118–127CrossRef PubMed
    61.Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, Placido AI, Perry G, Moreira PI (2012) The impairment of insulin signaling in Alzheimer’s disease. IUBMB Life 64(12):951–957. doi:10.​1002/​iub.​1098 CrossRef PubMed
    62.Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31(2):224–243. doi:10.​1016/​j.​neurobiolaging.​2008.​04.​002 CrossRef PubMed
    63.Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, Schwartz MW, Plymate S, Craft S (2003) Insulin increases CSF Abeta42 levels in normal older adults. Neurology 60(12):1899–1903CrossRef PubMed
    64.Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci : Off J Soc Neurosci 21(8):2561–2570
    65.Messier C, Teutenberg K (2005) The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 12(4):311–328. doi:10.​1155/​NP.​2005.​311 CrossRef PubMed PubMedCentral
    66.Ling X, Martins RN, Racchi M, Craft S, Helmerhorst E (2002) Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor. J Alzheimers Dis 4(5):369–374PubMed
    67.Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R (2013) Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology 154(1):375–387. doi:10.​1210/​en.​2012-1661 CrossRef PubMed
    68.Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Hiramatsu H, Restuccia U, Bachi A, Voisin V, Bader GD, Dick JE, Naldini L (2012) Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11(6):799–811. doi:10.​1016/​j.​stem.​2012.​09.​001 CrossRef PubMed PubMedCentral
    69.Huang F, Fang ZF, Hu XQ, Tang L, Zhou SH, Huang JP (2013) Overexpression of miR-126 promotes the differentiation of mesenchymal stem cells toward endothelial cells via activation of PI3K/Akt and MAPK/ERK pathways and release of paracrine factors. Biol Chem 394(9):1223–1233. doi:10.​1515/​hsz-2013-0107 CrossRef PubMed
    70.Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J (2011) MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 91(1):471–477. doi:10.​1016/​j.​yexmp.​2011.​04.​016 CrossRef PubMed
    71.Rankin CA, Sun Q, Gamblin TC (2008) Pre-assembled tau filaments phosphorylated by GSK-3b form large tangle-like structures. Neurobiol Dis 31(3):368–377. doi:10.​1016/​j.​nbd.​2008.​05.​011 CrossRef PubMed PubMedCentral
    72.Muyllaert D, Terwel D, Borghgraef P, Devijver H, Dewachter I, Van Leuven F (2006) Transgenic mouse models for Alzheimer’s disease: the role of GSK-3B in combined amyloid and tau-pathology. Rev Neurol (Paris) 162(10):903–907CrossRef
    73.Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci : Off J Soc Neurosci 23(18):7084–7092
    74.Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. The Journal of neuroscience : the official journal of the Society for Neuroscience 22 (10):RC221. doi:20026383
    75.Alpar A, Ueberham U, Bruckner MK, Seeger G, Arendt T, Gartner U (2006) Different dendrite and dendritic spine alterations in basal and apical arbors in mutant human amyloid precursor protein transgenic mice. Brain Res 1099(1):189–198. doi:10.​1016/​j.​brainres.​2006.​04.​109 CrossRef PubMed
    76.Pigino G, Pelsman A, Mori H, Busciglio J (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci : Off J Soc Neurosci 21(3):834–842
    77.Lee G, Leugers CJ (2012) Tau and tauopathies. Prog Mol Biol Transl Sci 107:263–293. doi:10.​1016/​B978-0-12-385883-2.​00004-7 CrossRef PubMed PubMedCentral
    78.Nueda ML, Garcia-Ramirez JJ, Laborda J, Baladron V (2008) dlk1 specifically interacts with insulin-like growth factor binding protein 1 to modulate adipogenesis of 3T3-L1 cells. J Mol Biol 379(3):428–442. doi:10.​1016/​j.​jmb.​2008.​03.​070 CrossRef PubMed
    79.Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376. doi:10.​1038/​nm.​3487 CrossRef PubMed PubMedCentral
    80.Sul HS (2009) Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 23(11):1717–1725. doi:10.​1210/​me.​2009-0160 CrossRef PubMed PubMedCentral
    81.Muller D, Cherukuri P, Henningfeld K, Poh CH, Wittler L, Grote P, Schluter O, Schmidt J, Laborda J, Bauer SR, Brownstone RM, Marquardt T (2014) Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343(6176):1264–1266. doi:10.​1126/​science.​1246448 CrossRef PubMed
    82.Jacobs FM, van der Linden AJ, Wang Y, von Oerthel L, Sul HS, Burbach JP, Smidt MP (2009) Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136(14):2363–2373. doi:10.​1242/​dev.​037556 CrossRef PubMed PubMedCentral
    83.Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572. doi:10.​1158/​0008-5472.​CAN-07-6639 CrossRef PubMed
    84.Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29(6):745–751. doi:10.​1007/​s12264-013-1348-5 CrossRef PubMed
    85.Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36(2):181–188CrossRef PubMed
    86.Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, Zhu BY, Gao ZP, Tang CK, Yin WD, Zhang L, Liao DF (2009) CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 36(9):e32–e39. doi:10.​1111/​j.​1440-1681.​2009.​05207.​x CrossRef PubMed
    87.Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271CrossRef PubMed PubMedCentral
  • 作者单位:Woori Kim (1)
    Haneul Noh (2)
    Yenarae Lee (1)
    Jeha Jeon (2)
    Arthi Shanmugavadivu (1)
    Donna L. McPhie (1)
    Kwang-Soo Kim (1)
    Bruce M. Cohen (1)
    Hyemyung Seo (2)
    Kai C. Sonntag (1)

    1. Department of Psychiatry, McLean Hospital, Harvard Medical School, MRC 223, 115 Mill Street, Belmont, MA, 02478, USA
    2. Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Dysfunction of growth factor (GF) activities contributes to the decline and death of neurons during aging and in neurodegenerative diseases. In addition, neurons become more resistant to GF signaling with age. Micro (mi)RNAs are posttranscriptional regulators of gene expression that may be crucial to age- and disease-related changes in GF functions. MiR-126 is involved in regulating insulin/IGF-1/phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling, and we recently demonstrated a functional role of miR-126 in dopamine neuronal cell survival in models of Parkinson’s disease (PD)-associated toxicity. Here, we show that elevated levels of miR-126 increase neuronal vulnerability to ubiquitous toxicity mediated by staurosporine (STS) or Alzheimer’s disease (AD)-associated amyloid beta 1–42 peptides (Aβ1–42). The neuroprotective factors IGF-1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and soluble amyloid precursor protein α (sAPPα) could diminish but not abrogate the toxic effects of miR-126. In miR-126 overexpressing neurons derived from Tg6799 familial AD model mice, we observed an increase in Aβ1–42 toxicity, but surprisingly, both Aβ1–42 and miR-126 promoted neurite sprouting. Pathway analysis revealed that miR-126 overexpression downregulated elements in the GF/PI3K/AKT and ERK signaling cascades, including AKT, GSK-3β, ERK, their phosphorylation, and the miR-126 targets IRS-1 and PIK3R2. Finally, inhibition of miR-126 was neuroprotective against both STS and Aβ1–42 toxicity. Our data provide evidence for a novel mechanism of regulating GF/PI3K signaling in neurons by miR-126 and suggest that miR-126 may be an important mechanistic link between metabolic dysfunction and neurotoxicity in general, during aging, and in the pathogenesis of specific neurological disorders, including PD and AD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700