Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET
详细信息    查看全文
  • 作者:Neha Gupta ; Ajay Kumar ; Rishu Chaujar
  • 关键词:Power gains ; GEWE ; RF ; Silicon nanowire MOSFET ; Parasitic capacitance ; $$f_{\mathrm{T}}$$ f T and $$f_{\mathrm{MAX}}$$ f MAX
  • 刊名:Journal of Computational Electronics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:14
  • 期:3
  • 页码:798-810
  • 全文大小:3,475 KB
  • 参考文献:1.Larson, L.E.: Silicon technology tradeoffs for radio-frequency/ mixed signal systems-on-a-chip. IEEE Trans. Electron Devices 50, 683-99 (2003)View Article
    2.Woerlee, P.H., et al.: RF-CMOS performance trends. IEEE Trans. Electron Devices. 48, 1776-782 (2001)View Article
    3.Enz, C.: An-MOS transistor model for RF IC design valid in all region of operation. IEEE Trans. Microw. Theory Tech. 50, 342-59 (2001)View Article
    4.Saijets, J., Andersson, M., Berg, M.A.: A comparative study of various MOSFET models at radio frequencies. Analog Integr. Circuits Signal Process. 33, 5-7 (2002)View Article
    5.Chen, Q.: (Brian): Compact Modeling of Multi-Gate MOSFETs for RF Designs. Presented at IEEE International Wireless Symposium (2013). doi:10.-109/?IEEE-IWS.-013.-616743
    6.Jimenez, D., Iniguez, B., Roig, J., Sune, J., Marsal, L. F., Pallares, J., Flores, D.: Physics-based model of the surrounding-gate MOSFET. In: IEEE Spanish Conference on Electron Devices. pp. 393-96 (2005)
    7.Sharma, D., Vishvakarma, S.K.: Precise analytical model for short channel cylindrical gate (CylG) gate-all-around (GAA) MOSFET. Solid-State Electron. 86, 68-4 (2013)View Article
    8.Gupta, S.K., Baishya, S.: Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects. J. Semicond. 34, 074001 (2013)View Article
    9.Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149-52 (2003)View Article
    10.Fu, J., Singh, N., Buddharaju, K., Teo, S., Shen, C., Jiang, Y., Zhu, C., Yu, M., Lo, G., Balasubramanian, N., Kwong, D., Gnani, E., Baccarani, G.: Si-nanowire based gate-all-around nonvolatile SONOS memory cell. IEEE Electron Device Lett. 29, 518-21 (2008)View Article
    11.Rustagi, S., Singh, N., Fang, W., Buddharaju, K., Omampuliyur, S., Teo, S., Tung, C., Lo, G., Balasubramanian, N., Kwong, D.: CMOS inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electron Device Lett. 28, 1021-024 (2007)View Article
    12.Yang, B., Buddharaju, K.D., Teo, S.H.G., Singh, N., Lo, G.Q., Kwong, D.L.: Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 29, 791-94 (2008)View Article
    13.Wang, R., Zhuge, J., Huang, R., Tian, Y., Xiao, H., Zhang, L., Li, C., Zhang, X., Wang, Y.: Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans. Electron Devices. 54, 1288-294 (2007)View Article
    14.Shur, M.: Split-gate field-effect transistor. Appl. Phys. Lett. 54, 162-64 (1989)View Article
    15.Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46, 865-70 (1999)View Article
    16.Zheng, C. Y.: The using of dual-material gate MOSFET in suppressing short-channel effects: a review. In: IEEE International Conference on Electronics, Communications and Control (2011). doi:10.-109/?ICECC.-011.-066420
    17.Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 17, 205-12 (2014)View Article
    18.Zhou, W., Zhang, L., Chen, L., Xu, Y., Wu, W., He, J.: Test article sample title placed here. J. Nanosci. Nanotechnol. 11, 11006-10010 (2011)View Article
    19.Gupta, N., Chaujar, R.: Implications of transport models on the analog performance of gate electrode workfunction engineered (GEWE) SiNW MOSFET. In: IEEE \(2{{\rm nd}}\) International Conference on Devices, Circuits and Systems (2014). doi:10.-109/?ICDCSyst.-014.-926154
    20.Gupta, N., Kumar, A., Chaujar, R.: Oxide bound impact on hot-carrier degradation for gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. Microsyst.Technol. (2015). doi:10.-007/?s00542-015-2557-9
    21.Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits. 40, 144-55 (2005)View Article
    22.ATLAS User’s Manual. SILVACO Int., Santa Clara (2014)
    23.Yang, G., Wang, S., Wang, R.: An efficient preconditioning technique for numerical simulation of hydrodynamic model semiconductor devices. Int. J. Numer. Simul. 16, 387-00 (2003)View Article
    24.Chaudhry, A., Roy, J.N.: Mosfet models, quantum mechanical effects and modeling approaches: a review. J. Semicond. Technol. Sci. 10, 20-7 (2010)View Article
    25.Patnaik, V.S., Gheedia, A., Kumar, M.J.: 3D Simulation of nanowire FETs using quantum models. http://?web.?iitd.?ac.?in/?~mamidala/?HTMLobj-1227/?jul_?aug_?sep08 (2008)
    26.Gnani, E., Reggiani, S., Rudan, M., Baccarani, G.: On the electrostatics of double-gate and cylindrical nanowire MOSFETs. J. Comput. Electron. 4, 71-4 (2005)View Article
    27.Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices. 59, 3263
  • 作者单位:Neha Gupta (1)
    Ajay Kumar (1)
    Rishu Chaujar (1)

    1. Microelectronics Research Lab, Department of Engineering Physics, Delhi Technological University, Bawana Road, Delhi, 110042, India
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Optical and Electronic Materials
    Mathematical and Computational Physics
    Applied Mathematics and Computational Methods of Engineering
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8137
文摘
In this paper, we explore the quantitative investigation of the high-frequency performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET and compared with silicon nanowire MOSFET(SiNW MOSFET) using device simulators: ATLAS and DEVEDIT 3D. Simulation results demonstrate the improved RF performance exhibited by GEWE-SiNW MOSFET over SiNW MOSFET in terms of transconductance \((\hbox {g}_{\mathrm{m}})\), cut-off frequency \((f_{\mathrm{T}})\), maximum oscillator frequency \((f_{\mathrm{MAX}})\), power gains (Gma, G\({_\mathrm{MT}}\)) parasitic capacitances, stern’s stability factor and intrinsic delay. Further, using three-dimensional device simulations, we have also examined the efficacy of parameter variations in terms of oxide thickness, radius of silicon nanowire, channel length and gate metal workfunction engineering on RF/microwave figure of merits of GEWE-SiNW MOSFET. Simulation result reveals significant enhancement in \(f_{\mathrm{T}}\) and \(f_{\mathrm{MAX}}\); and a reduction in switching time in GEWE-SiNW MOSFET due to alleviated short channel effects, improved drain current and smaller parasitic capacitance, thus providing detailed knowledge about the device’s RF performance at such aggressively scaled dimensions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700