Effect of nanofillers on flame retardancy, chemical resistance, antibacterial properties and biodegradation of wood/styrene acrylonitrile co-polymer composites
详细信息    查看全文
  • 作者:Rashmi R. Devi ; Tarun K. Maji
  • 刊名:Wood Science and Technology
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:47
  • 期:6
  • 页码:1135-1152
  • 全文大小:608KB
  • 参考文献:1. Ashori A, Nourbakhsh A (2011) Preparation and characterization of polypropylene/wood flour/nanoclay composites. Eur J Wood Prod 69(4):663-66 CrossRef
    2. Behzad HM, Ashori A, Tarmian A, Tajvidi M (2012) Impact of wood preservative treatments on some physico-mechanical properties of wood flour/polyethylene composites. Constr Build Mater 35(10):246-50 CrossRef
    3. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125-55 CrossRef
    4. Cai X, Riedl B, Zhang SY, Wan H (2008) The impact of nature of nanofillers on the performance of wood polymer nanocomposites. Composites: Part A 39:727-37 CrossRef
    5. Camino G, Tartagilione G, Frache A, Manferti C, Costa G (2005) Thermal and combustion behaviour of layered silicate–epoxy nanocomposites. Polym Degrad Stab 90:354-62 CrossRef
    6. Chen Y, Lin A, Gan F (2006) Improvement of polyacrylate coating by filling modified nano-TiO2. Appl Surf Sci 252:8635-640 CrossRef
    7. Clausen CA, Kartal SN, Arango RA, Green F (2011) The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Res Lett 6:427 CrossRef
    8. Clemon C (2002) Wood-plastic composites in the United States. The interfacing of two industries. Forest Prod J 52(16):10-8
    9. Devi RR, Maji TK (2011) Physical properties of simul (red-silk cotton)-wood ( / Bombax ceiba L.) chemically modified with styrene-acrylonitrile co-polymer and nanoclay. Holzforschung 66(3):365-71
    10. Devi RR, Maji TK (2012a) Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol 46:299-15 CrossRef
    11. Devi RR, Maji TK (2012b) Study on properties of simul wood ( / Bombax ceiba L.) impregnated with styrene acrylonitrile copolymer, TiO2, and nanoclay. Polym Bull 69:105-23 CrossRef
    12. Fujishima A, Rao TN, Tryk DN (2000) Titanium dioxide photocatalysis. J Photobiol Photochem Rev 1:1-1 CrossRef
    13. Hamzeh Y, Ashori A, Marvast EH, Rashedi K, Mohammad Olfat A (2012) A comparative study on the effects of Coriolus versicolor on properties of HDPE/wood flour/paper sludge composites. Compos B 43(5):2409-414 CrossRef
    14. Hon DNS (1991) Photochemistry of wood. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 525-55
    15. Hua D, Cheuk K, Wei-ning Z, Chen W, Chang-fa X (2007) Low temperature preparation of nano TiO2 and its application as antibacterial agents. Trans Nonferrous Met Soc China 17:700-03
    16. Jonathan SG, Fasidi IO, Ajayi AO, Adegeye A (2008) Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Bioresour Technol 99:807-11 CrossRef
    17. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete / Phanerochaete chrysosporium. Fungal Genet Biol 44:77-7 CrossRef
    18. Li J, Yu H, Sun Q, Liu Y, Cui Y, Lu Y (2010) Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl Surf Sci 256:5046-050 CrossRef
    19. Li Y, Dong X, Liu Y, Li J, Wang F (2011) Improvement of dimensional stability of wood via combination treatment: swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Int Biodeterior Biodegrad 65:1087-094 CrossRef
    20. Liu D, Padias AB, Hall HK Jr (1995) On the Thermal Co-Polymerization of Styrene with Acrylonitrile. Macromolecules 28(2):622-26 CrossRef
    21. Mahltig B, Swaboda C, Roessler A, Bottcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18:3180-192 CrossRef
    22. Matsunaga T, Tomoda R, Nakajima Y, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330-333
    23. Minelli M, Angelis MGD, Doghieri F, Rocchetti M, Montenero A (2010) Barrier properties of organic–inorganic hybrid coatings based on polyvinyl alcohol with improved water resistance. Polym Eng Sci 50:144-53 CrossRef
    24. Nourbakhsh A, Baghlani FF, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Ind Crops Prod 33(1):183-87 CrossRef
    25. Panov D, Terziev N (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int Biodeterior Biodegrad 63(4):456-61 CrossRef
    26. Perez C, Paul M, Bazerque P (1990) Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp 15:113-15
    27. Sereshti H, Rovshandeh JM (2003) Chemical modification of beech wood. Iran Polym J 12:15-0
    28. Sheshmani S, Ashori A, Farhani F (2012) Effects of extractives on the performance properties of wood flour-polypropylene composites. Appl Polym Sci 123(3):1563-567 CrossRef
    29. Stolf DO, Rocco Lah FA (2004) Wood-polymer composite: physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate. Mater Res 7(4):611-17 CrossRef
    30. Sun Q, Lu Y, Liu Y (2011) Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J Mater Sci 46(42):7706-712 CrossRef
    31. Vassiliou AA, Bikiaris D, El Mabrouk K, Kontopoulou M (2011) Effect of evolved interactions in poly(butylene succinate)/fumed silica biodegradable in situ prepared nanocomposites on molecular weight, material properties and biodegradability. J Appl Polym Sci 119(4):2010-024 CrossRef
    32. Zhao G, Lu WH (2008) Structure and characterization of Chinese fir ( / Cunninghamia lanceolata) wood/MMT intercalation nanocomposite (WMNC). Front For China 3(1):121-26 CrossRef
  • 作者单位:Rashmi R. Devi (1)
    Tarun K. Maji (1)

    1. Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
  • ISSN:1432-5225
文摘
Wood polymer nanocomposites (WPNCs) based on simul wood (Bombex ceiba, L.) were prepared by impregnation of styrene acrylonitrile copolymer, γ-methacryloyloxy trimethyl silane-modified TiO2, SiO2 nanoparticles and nanoclay intercalating mixture through vacuum impregnation. The impact of nanofillers on the physical properties, flame retardancy, water resistance, anti-swelling efficiency and biodegradability of the resultant WPNCs was investigated. Remarkable enhancement in wood properties such as flame retardancy, water resistance and anti-swelling efficiency was achieved with the treatment. The results showed that all the properties were maximum for wood samples treated with SAN/TiO2 (0.5?%)/SiO2 (0.5?%)/nanoclay (0.5?%). The presence of TiO2 nanoparticles in WPNC exhibited antibacterial activity. The resistance to biodegradation was observed by incorporation of nanofillers into wood.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700