Turning machining induced microstructural stability of a high Nb-containing TiAl alloy during high temperature exposure
详细信息    查看全文
  • 作者:Lu Fang ; Jun-Pin Lin ; Xiao-Chan Qiu ; Jin-Xiao Ou ; Xian-Fei Ding
  • 关键词:High Nb ; containing TiAl alloy ; Residual deformation energy ; Microstructural instability ; Recrystallization ; Phase transformation
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:77-84
  • 全文大小:2,805 KB
  • 参考文献:[1]Lin JP, Xu XJ, Wang YL, He SF, Zhang Y, Song XP, Chen GL. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics. 2007;15(5–6):668.CrossRef
    [2]Zhang WJ, Chen GL, Appel F, Nieh TG, Deevi SC. A preliminary study on the creep behavior of Ti–45Al–10Nb alloy. Mater Sci Eng A. 2001;315(1–2):250.CrossRef
    [3]Tetsui T. Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy. Intermetallics. 2002;10(3):239.CrossRef
    [4]Kim YW, Rosenberger A, Dimiduk DM. Microstructural changes and estimated strengthening contributions in a gamma alloy Ti–45Al–5Nb pack-rolled sheet. Intermetallics. 2009;17(12):1017.CrossRef
    [5]Jones PE, Eylon D. Effects of conventional machining on high cycle fatigue behavior of the intermetallic alloy Ti-47Al-2Nb-2Cr (at%). Mater Sci Eng A. 1999;263(2):296.CrossRef
    [6]Javidi A, Rieger U, Eichlseder W. The effect of machining on the surface integrity and fatigue life. Int J Fatigue. 2008;30(10–11):2050.CrossRef
    [7]Matsumoto Y, Hashimoto F, Lahoti G. Surface integrity generated by precision hard turning. CIRP Ann Manuf Technol. 1999;48(1):59.CrossRef
    [8]Aspinwall DK, Dewes RC, Mantle AL. The machining of γ-TiAI intermetallic alloys. CIRP Ann Manuf Technol. 2005;54(1):99.CrossRef
    [9]Jiang H, Rong TS, Hu D, Jones IP, Voice W. Thermal cycling of Ti46Al8Nb1B. Intermetallics. 2006;14(12):1433.CrossRef
    [10]Zhao WY, Pei YL, Zhang DH, Ma Y, Gong SK, Xu H. The microstructure and tensile property degradation of a gamma-TiAl alloy during isothermal and cyclic high temperature exposures. Intermetallics. 2011;19(3):429.CrossRef
    [11]Chen GL, Lin JP, Song XP, Wang Y, Ren YR. Development of high Nb containing high temperature TiAl alloys. In: Proceedings of Niobium: High Temperature Applications. Araxa, Brazil; 2003. 153.
    [12]Zhao WY, Liu YZ, Liu L, Yu YX, Ma Y, Gong SK. Surface recrystallization of a gamma-TiAl alloy induced by shot peening and subsequent annealing treatments. Appl Surf Sci. 2013;270:690.CrossRef
    [13]Huang ZW, Sun C. On the role of thermal exposure on the stress controlled fatigue behaviour of a high strength titanium–aluminum alloy. Mater Sci Eng A. 2014;615:29.CrossRef
    [14]Fang L, Ding XF, He JP, Zhang LQ, Lin Z, Lin JP. Microstructure instability of fully lamellar TiAl alloy containing high content of Nb after long-term thermal cycling. Trans Nonferrous Met Soc China. 2014;24(10):3095.CrossRef
    [15]Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219.CrossRef
    [16]Zhang Y, Godfrey A, Jensen DJ. Local boundary migration during recrystallization in pure aluminium. Scr Mater. 2011;64(4):331.CrossRef
    [17]Zhang WJ, Lorenz U, Appel F. Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys. Acta Mater. 2000;48(11):2803.CrossRef
    [18]Cheng TT. Effects of thermal exposure on the microstructure and properties of a γ-TiAl based alloy containing 44Al–4Nb–4Zr–0.2Si–0.3B. Intermetallics. 1999;7(9):995.CrossRef
    [19]Huang ZW, Voice W, Bowen P. The effects of long-term air exposure on the stability of lamellar TiAl alloys. Intermetallics. 2000;8(4):417.CrossRef
    [20]Huang ZW, Voice W, Bowen P. Thermal exposure induced α2 + γ → B2(ω) and α2 → B2(ω) phase transformations in a high Nb fully lamellar TiAl alloy. Scr Mater. 2003;48(1):79.CrossRef
    [21]Huang ZW, Hu W. Thermal stability of an intermediate strength fully lamellar Ti–45Al–2Mn–2Nb–0.8 vol.% TiB2 alloy. Intermetallics. 2014;54:49.CrossRef
    [22]Appel F, Lorenz U, Oehring M, Sparka U, Wagner R. Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Mater Sci Eng A. 1997;233(1–2):1.CrossRef
    [23]Zhu H, Seo DY, Maruyama K, Au P. Strengthening of a fully lamellar TiAl + W alloy by dynamic precipitation of β phase during long-term creep. Scr Mater. 2006;54(3):425.CrossRef
    [24]Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: microstructure control through phase transformations. Intermetallics. 2005;13(9):993.CrossRef
  • 作者单位:Lu Fang (1)
    Jun-Pin Lin (1)
    Xiao-Chan Qiu (1)
    Jin-Xiao Ou (2)
    Xian-Fei Ding (3)

    1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
    2. School of Architecture and Engineering, Heilongjiang University, Harbin, 150080, China
    3. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, 100083, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
Turning machining induced microstructural instability was investigated in a fully lamellar Ti–45Al–8.5Nb–(W, B, Y) alloy during high temperature exposure. After turning machining followed by thermal exposure at 900 or 1000 °C for 100, 300 and 500 h, a depth-dependent gradient microstructure with random orientations was produced in the region close to the machining surface. Two typical layers, a fine-grained (FG) layer with equiaxed grains and a coarse-grained (CG) layer with elongated grains, are formed in this region in transversal direction. The thickness of the two layers is up to 120 μm after thermal exposure at 1000 °C for 500 h, which is less than the depth of the hardened region (200 μm) after turning machining. Most of the new grains in FG and CG layers are constituted of γ single phase, while short α2 segments and few B2 particles are precipitated at the γ/γ interface or inside the γ grains. Recrystallization and phase boundary bulging are found to be the major mechanisms responsible for lamellar degradation in FG layer and CG layer, respectively. The residual deformation energy stored is considered to be the main driving force of this process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700