Recent advances in the development of nanomaterials for DC-based immunotherapy
详细信息    查看全文
  • 作者:Ligeng Xu ; Jian Xiang ; Rui Peng ; Zhuang Liu
  • 关键词:Dendritic cells ; Immunotherapy ; Cancer vaccine ; Tracking ; Nanomaterials
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:61
  • 期:7
  • 页码:514-523
  • 全文大小:1,184 KB
  • 参考文献:1.Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277CrossRef
    2.Schuler G, Steinman RM (1997) Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186:1183–1187CrossRef
    3.Melief CJM (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383CrossRef
    4.Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489CrossRef
    5.Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRef
    6.Ledford H (2015) Therapeutic cancer vaccine survives biotech bust. Nature 519:17–18CrossRef
    7.Ledford H (2013) Immunotherapy’s cancer remit widens. Nature 497:544
    8.Irvine DJ, Hanson MC, Rakhra K et al (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115:11109–11146CrossRef
    9.Cambi A, Lidke DS, Arndt-Jovin DJ et al (2007) Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett 7:970–977CrossRef
    10.Lim YT, Noh YW, Han JH et al (2008) Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. Small 4:1640–1645CrossRef
    11.Reichardt W, Durr C, von Elverfeldt D et al (2008) Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation. J Immunol 181:4770–4779CrossRef
    12.Long CM, van Laarhoven HWM, Bulte JWM et al (2009) Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res 69:3180–3187CrossRef
    13.Cruz LJ, Tacken PJ, Bonetto F et al (2011) Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol Pharm 8:520–531CrossRef
    14.Su H, Mou YB, An YL et al (2013) The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomed 8:3737–3744
    15.Xiang J, Xu LG, Gong H et al (2015) Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 9:6401–6411CrossRef
    16.Nestle FO, Farkas A, Conrad C (2005) Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 17:163–169CrossRef
    17.Xu LG, Liu Y, Chen ZY et al (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012CrossRef
    18.Xu LG, Liu Y, Chen ZY et al (2013) Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv Mater 25:5928–5936CrossRef
    19.Moon JJ, Suh H, Bershteyn A et al (2011) Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 10:243–251CrossRef
    20.Kasturi SP, Skountzou I, Albrecht RA et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–550CrossRef
    21.Reddy ST, van der Vlies AJ, Simeoni E et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164CrossRef
    22.Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160CrossRef
    23.Moon JJ, Suh H, Li AV et al (2012) Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T-fh cells and promote germinal center induction. Proc Natl Acad Sci USA 109:1080–1085CrossRef
    24.Mishra D, Mishra PK, Dubey V et al (2007) Evaluation of uptake and generation of immune response by murine dendritic cells pulsed with hepatitis B surface antigen-loaded elastic liposomes. Vaccine 25:6939–6944CrossRef
    25.Elamanchili P, Diwan M, Cao M et al (2004) Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412CrossRef
    26.Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin—review of animal and human studies. Clin Pharmacokinet 42:419–436CrossRef
    27.Cruz LJ, Tacken PJ, Fokkink R et al (2011) The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials 32:6791–6803CrossRef
    28.Tamber H, Johansen P, Merkle HP et al (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57:357–376CrossRef
    29.Ataman-Onal Y, Munier S, Ganee A et al (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 112:175–185CrossRef
    30.Jeon HJ, Jeong JI, Jang MK et al (2000) Effect of solvent on the preparation of surfactant-free poly(D,L-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm 207:99–108CrossRef
    31.Aline F, Brand D, Pierre J et al (2009) Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 27:5284–5291CrossRef
    32.Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRef
    33.Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952CrossRef
    34.Herber DL, Cao W, Nefedova Y et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16:880–887CrossRef
    35.de Vries IJM, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRef
    36.Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef
    37.Chen GY, Qju HL, Prasad PN et al (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214CrossRef
    38.Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349CrossRef
    39.Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499CrossRef
    40.Noh YW, Lim YT, Chung BH (2008) Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 22:3908–3918CrossRef
    41.Li C, Liang SJ, Zhang CL et al (2015) Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54:177–187CrossRef
    42.Figdor CG, de Vries IJM, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480CrossRef
    43.Eager R, Nemunaitis J (2005) GM-CSF gene-transduced tumor vaccines. Mol Ther 12:18–27CrossRef
    44.Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor-cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. Proc Natl Acad Sci USA 90:3539–3543CrossRef
    45.de Vries IJM, Krooshoop DJEB, Scharenborg NM et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:12–17
    46.Olasz EB, Lang LX, Seidel J et al (2002) Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 260:137–148CrossRef
    47.Schimmelpfennig CH, Schulz S, Arber C et al (2005) Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 167:1321–1331CrossRef
    48.Noh YW, Jang YS, Ahn KJ et al (2011) Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 32:6254–6263CrossRef
    49.Bilati U, Allemann E, Doelker E (2005) Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS Pharmscitech 6:E594–E604CrossRef
    50.Blank F, Gerber P, Rothen-Rutishauser B et al (2011) Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology 5:606–621CrossRef
    51.Millers D, Grigorjeva L, Lojkowski W et al (2004) Luminescence of ZnO nanopowders. Radiat Meas 38:589–591CrossRef
    52.Thai CK, Dai HX, Sastry MSR et al (2004) Identification and characterization of Cu2O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng 87:129–137CrossRef
    53.Cho NH, Cheong TC, Min JH et al (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6:675–682CrossRef
    54.Huang EH, Kaufman HL (2002) CEA-based vaccines. Expert Rev Vaccines 1:49–63CrossRef
    55.Liu Q, Feng W, Yang TS et al (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8:2033–2044CrossRef
    56.Punjabi A, Wu X, Tokatli-Apollon A et al (2014) Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 8:10621–10630CrossRef
    57.Gai SL, Li CX, Yang PP et al (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343–2389CrossRef
    58.Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989CrossRef
    59.Cheng L, Yang K, Li YG et al (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50:7385–7390CrossRef
    60.Cheng L, Wang C, Ma XX et al (2013) Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater 23:272–280CrossRef
    61.Wang C, Cheng L, Xu H et al (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33:4872–4881CrossRef
  • 作者单位:Ligeng Xu (1)
    Jian Xiang (1)
    Rui Peng (1)
    Zhuang Liu (1)

    1. Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
As professional antigen presenting cells, dendritic cells (DCs) greatly determine the quality of the innate and adaptive immunities. Therefore, DC-based immunotherapy has been one of the hotspots in cancer immunotherapy in recent years. Although this unique therapeutic strategy has been approved by U.S. Food and Drug Administration for prostate cancer treatment, the efficacy of DC-based immunotherapy remains to be further improved. Moreover, it is still not completely clear about the immunological basis of DCs, which is another hurdle for the progress of DC-based immunotherapy. Due to their unique physicochemical properties, nanomaterials have shown potentials in addressing these above mentioned problems and have provided important guidelines for optimizing DC-based immunotherapy. However, it is still at the starting stage for this emerging field and there are many critical questions in the rational design of this therapeutic strategy to be answered. Therefore, it is greatly necessary to review and analyze recent progresses in this field. In this review, we mainly focus on the development of various types nanoparticles for DC-based immunotherapy. The existed challenges in this field are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700