Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique
详细信息    查看全文
  • 作者:Jie Li ; Changlun Chen ; Rui Zhang ; Xiangke Wang
  • 关键词:reductive immobilization ; Re(VII) ; NZVI/rGOs ; plasma technique
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:150-158
  • 全文大小:1,332 KB
  • 参考文献:1.Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2013, 47: 5302–5310CrossRef
    2.Fan DM, Anitori RP, Tebo BM, Tratnyek PG. Environ Sci Technol, 2014, 48: 7409–7417CrossRef
    3.Benjamin PB, Ivana R, McGregor D, Mbomekalle IM, Lukens WW, Lynn CF. J Am Chem Soc, 2011, 133: 18802–18815CrossRef
    4.Darab JG, Smith PA. Chem Mater, 1996, 8: 1004–1021CrossRef
    5.Kim E, Boulegue J. Radiochim Acta, 2003, 91: 1–6CrossRef
    6.Mashkani SG,Ghazvini PTM, Aligol DA. Bioresource Technol, 2009, 100: 603–608CrossRef
    7.Xiong Y, Xu J, Shan WJ, Lou ZN, Fang DW, Zang SL, Han GX. Bioresource Technol, 2013, 127: 464–472CrossRef
    8.Kim E, Benedetti MF, Boulegue J. Water Res, 2004, 38: 448–454CrossRef
    9.Wan J, Klein J, Simon S, Joulian C, Dictor MC, Deluchat V, Dagot C. Water Res, 2010, 44: 5098–5108CrossRef
    10.Kanel SR, Manning B, Charlet L, Choi H. Environ Sci Technol, 2005, 39: 1291–1298CrossRef
    11.Wilkin RT, Su C, Ford RG, Paul CJ. Environ Sci Technol, 2005, 39: 4599–4605CrossRef
    12.Liang LP, Guan XH, Shi Z, Li JL, Wu YN, Tratnyek PG. Environ Sci Technol, 2014, 48: 6326–6334CrossRef
    13.Wang Y, Fang ZQ, Kang Y, Tsang EP. J Hazard Mater, 2014, 275: 230–237CrossRef
    14.Liang LP, Yang WJ, Guan XH, Li JL, Xu ZJ, Wu J, Huang YY, Zhang XZ. Water Res, 2013, 47: 5846–5855CrossRef
    15.Wang Y, Fang ZQ, Liang B, Tsang EP. Chem Eng J, 2014, 247: 283–290CrossRef
    16.Joo SH, Feitz AJ, Sedlak DL, Waite TD. Environ Sci Technol, 2005, 39: 1263–1268CrossRef
    17.Yang GC, Lee HL. Water Res, 2005, 39: 884–894CrossRef
    18.Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Environ Sci Technol, 2006, 41: 284–290CrossRef
    19.Chandra V, Park J, Chun YJ, Lee W, Hwang IC, Kim KS. ACS Nano, 2010, 4: 3979–3986CrossRef
    20.Jabeen H, Chandra V, Jung SJ, Lee W, Kim KS, Kim SB. Nanoscale, 2011, 3: 3583–3585CrossRef
    21.Wu QY, Lan JH, Wang CZ, Zhao YL, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 10273–10280CrossRef
    22.Wu QY, Lan JH, Wang CZ, Xiao CL, Zhao YL, Wei YZ, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 2149–2158CrossRef
    23.Li ZJ, Chen F, Yuan LY, Zhao YL, Chai ZF, Shi WQ. Chem Eng J, 2012, 210: 539–546CrossRef
    24.Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP. Adv Mater, 2011, 23: 3959–3963CrossRef
    25.Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano, 2010, 4: 4806–4814CrossRef
    26.Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE. Environ Sci Technol, 2008, 42: 2600–2605CrossRef
    27.Singh G, Sutar DS, Botcha VD, Narayanam PK, Talwar SS, Srinivasa RS, Major SS. Nanotechnology, 2013, 24: 355704–355715CrossRef
    28.Dou XM, Li R, Zhao B, Liang WY. J Hazard Mater, 2010, 182: 108–114CrossRef
    29.Liger E, Charlet L, Van CP. Geochim Cosmochim Acta, 1999, 63: 2939–2955CrossRef
    30.Ho YS. Water Res, 2006, 40: 119–125CrossRef
    31.Bishop ME, Dong HL, Kukkadapu RK, Liu CX, Edelmann RE. Geochim Cosmochim Acta, 2011, 75: 5229–5246CrossRef
    32.Peretyazhko TS, Zachara JM, Kukkadapu RK, Heald SM, Kutnyakov IV, Resch CT, Arey BW, Wang CM, Kovarik L, Phillips JL, Moore DA. Geochim Cosmochim Acta, 2012, 92: 48–66CrossRef
    33.Lee JH, Zachara JM, Fredrickson JK, Heald SM, McKinley JP, Plymale AE, Resch CT, Moore DA. Geochim Cosmochim Acta, 2014, 136: 247–264CrossRef
    34.Lv XS, Jiang GM, Xu XH. Chemosphere, 2011, 85: 1204–1209CrossRef
    35.Peretyazhko T, Zachara JM, Heald SM, Jeon BH, Kukkadapu RK, Liu C, Moore D, Resch CT. Geochim Cosmochim Acta, 2008, 72: 1521–1539CrossRef
    36.Yan S, Hua B, Bao ZY, Yang J, Liu CX, Deng BL. Environ Sci Technol, 2010, 44: 7783–7789CrossRef
    37.Zhang L, Jiang XQ, Xu TC, Yang LJ, Zhang YY, Jin HJ. Ind Eng Chem Res, 2012, 51: 5577–5584CrossRef
    38.Xiong Y, Chen CB, Gu XJ, Biswas BK, Shan WJ. Bioresource Technol, 2011, 102: 6857–6862CrossRef
    39.Shan WJ, Fang DW, Zhao ZY, Yue S, Lou ZN, Xing ZQ, Xiong Y. Biomass Bioenerg, 2012, 37: 289–297CrossRef
    40.Choe JK, Shapley JR, Strathmann TJ, Werth CJ. Environ Sci Technol, 2010, 44: 4716–4721CrossRef
    41.Pacer RA. J Inorg Nucl Chem, 1973, 35: 1375–1377CrossRef
  • 作者单位:Jie Li (1) (2)
    Changlun Chen (1) (3)
    Rui Zhang (1) (2)
    Xiangke Wang (3) (4) (5)

    1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
    2. University of Science and Technology of China, Hefei, 230026, China
    3. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
    4. School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
    5. Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Technetium-99 (99Tc), largely produced by nuclear fission of 235U or 239Pu, is a component of radioactive waste. This study focused on a remediation strategy for the reduction of pertechnetate (TcO 4 - ) by studying its chemical analogue rhenium (Re(VII)) to avoid the complication of directly working with radioactive elements. Nanoscale zero-valent iron particles supported on graphene (NZVI/rGOs) from GOs-bound Fe ions were prepared by using a H2/Ar plasma technique and were applied in the reductive immobilization of perrhenate (ReO 4 - ). The experimental results demonstrated that NZVI/rGOs could efficiently remove Re from the aqueous solution, with enhanced reactivity, improved kinetics (50 min to reach equilibrium) and excellent removal capacity (85.77 mg/g). The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/rGOs included adsorption and reduction, which are significant to the prediction and estimation of the effectiveness of reductive TcO 4 - by NZVI/rGOs in the natural environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700