A Pricing Power Control Scheme with Statistical Delay QoS Provisioning in Uplink of Two-tier OFDMA Femtocell Networks
详细信息    查看全文
  • 作者:Shenghua He ; Zhaoming Lu ; Xiangming Wen ; Zhicai Zhang…
  • 关键词:Femtocell ; Interference mitigation ; Delay QoS ; Effective capacity
  • 刊名:Mobile Networks and Applications
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:20
  • 期:4
  • 页码:413-423
  • 全文大小:1,474 KB
  • 参考文献:1.(2014). Cisco, White Paper
    2.Chandrasekhar V, Andrews J, Gatherer A (2008) IEEE Commun Mag 46(9):59. doi:10.鈥?109/鈥婱COM.鈥?008.鈥?623708 CrossRef
    3.Andrews J, Claussen H, Dohler M, Rangan S, Reed M (2012) IEEE J Sel Areas Commun 30(3):497. doi:10.鈥?109/鈥婮SAC.鈥?012.鈥?20401 CrossRef
    4.Bennis M, Perlaza S (2011). In: 2011 IEEE International Conference on Communications (ICC), pp 1鈥?. doi:10.鈥?109/鈥媔cc.鈥?011.鈥?962649
    5.Lien SY, Tseng CC, Chen KC, Su CW (2010). In: 2010 IEEE International Conference on Communications (ICC), pp 1鈥?. doi:10.鈥?109/鈥婭CC.鈥?010.鈥?502784
    6.Sun Y, Jover R, Wang X (2012) IEEE Trans Wirel Commun 11(2):614. doi:10.鈥?109/鈥婽WC.鈥?011.鈥?20511.鈥?01794 CrossRef
    7.Jo HS, Mun C, Moon J, Yook JG (2009) IEEE Trans Wirel Commun 8(10):4906. doi:10.鈥?109/鈥婽WC.鈥?009.鈥?80457 CrossRef
    8.Saraydar C, Mandayam NB, Goodman D (2001) IEEE J Sel Areas Commun 19(10):1883. doi:10.鈥?109/鈥?9.鈥?57304 CrossRef
    9.Hou Y, Laurenson D (2010). In: 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), pp 1鈥?. doi:10.鈥?109/鈥媀ETECF.鈥?010.鈥?594154
    10.Erturk M, Aki H, Guvenc I, Arslan H (2010). In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp 1鈥?. doi:10.鈥?109/鈥婫LOCOM.鈥?010.鈥?683397
    11.Ellouze R, Gueroui M, Alimi A (2011). In: 2011 IEEE Wireless Communications and Networking Conference (WCNC), pp 84鈥?9. doi:10.鈥?109/鈥媁CNC.鈥?011.鈥?779111
    12.Taleb T, Ksentini A (2012). In: 2012 IEEE International Conference on Communications (ICC), pp 5146鈥?150. doi:10.鈥?109/鈥婭CC.鈥?012.鈥?364289
    13.Lin S, Tian H (2013). In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp 649鈥?54. doi:10.鈥?109/鈥媁CNC.鈥?013.鈥?554640
    14.Tsiropoulou E, Katsinis G, Vamvakas P, Papavassiliou S (2013). In: 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp 104鈥?08. doi:10.鈥?109/鈥婥AMAD.鈥?013.鈥?708098
    15.Wu D, Negi R (2003) IEEE Trans Wirel Commun 2(4):630. doi:10.鈥?109/鈥婽WC.鈥?003.鈥?14353
    16.Tang J, Zhang X (2007) IEEE Trans Wirel Commun 6(12):4349. doi:10.鈥?109/鈥婽WC.鈥?007.鈥?6031 CrossRef
    17.Qiao D, Gursoy M, Velipasalar S (2011) IEEE Trans Commun 59 (7):2006. doi:10.鈥?109/鈥婽COMM.鈥?011.鈥?51311.鈥?90315 CrossRef
    18.Xiong C, Li G, Liu Y, Chen Y, Xu S (2013) IEEE Trans Wirel Commun 12(6):3085. doi:10.鈥?109/鈥婽WC.鈥?013.鈥?50313.鈥?21695 CrossRef
    19.Al Daoud A, Alpcan T, Agarwal S, Alanyali M (2008). In: 2008. CDC 2008. 47th IEEE Conference on Decision and Control, pp 1422鈥?427. doi:10.鈥?109/鈥婥DC.鈥?008.鈥?738975
    20.Economides AA, Silvester JA (1990). In: Proceedings 28th Annual Allerton Conference on Communications, Control and Computing, p 1990
    21.Boyd S, Vandenberghe L (2004). In: Cambridge University Press
    22.Saraydar C, Mandayam NB, Goodman D (2002) IEEE Trans Commun 50(2):291. doi:10.鈥?109/鈥?6.鈥?83324 CrossRef
    23.Kennedy J, Eberhart R (1995). In: IEEE International Conference on Neural Networks, 1995. Proceedings, vol 4, pp 1942鈥?948. doi:10.鈥?109/鈥婭CNN.鈥?995.鈥?88968
    24.Shi Y, Eberhart R (1999). In: 1999. CEC 99. Proceedings of the 1999 Congress on Evolutionary Computation, vol 3, p 1950. doi:10.鈥?109/鈥婥EC.鈥?999.鈥?85511
    25.Xie T, Zhang G, Xie J, Liu Y (2013). In: 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), pp 489鈥?93. doi:10.鈥?109/鈥婭MSNA.鈥?013.鈥?743322
    26.RAN4 G. In: R4-092042
  • 作者单位:Shenghua He (1)
    Zhaoming Lu (1)
    Xiangming Wen (1)
    Zhicai Zhang (1)
    Jun Zhao (1)
    Wenpeng Jing (1)

    1. Beijing University of Posts, telecommunications (BUPT), No.10 Xitucheng Road, Beijing, China
  • 刊物类别:Computer Science
  • 刊物主题:Computer Communication Networks
    Electronic and Computer Engineering
    Business Information Systems
  • 出版者:Springer Netherlands
  • ISSN:1572-8153
文摘
Femtocell is a promising technique to enhance indoor coverage and improve network capacity. Nevertheless, because of the random and co-channel deployment of femtocells, the macrocell will suffer serious cross-tier interference from femtocells in two-tier femtocell networks. Thus, interference mitigation in femtocell networks has been an indispensable task. Meanwhile, with the explosive popularity of smart terminals, especially smart phones and tablets, the wireless networks have loaded a mount of data services with diverse delay quality of service (QoS) requirements. However, due to the stochastically varying nature of wireless physical channel, it is extremely difficult to offer a deterministic delay guarantee in wireless networks. Therefore, the effective capacity of femtocell users (FU) has been introduced to provide a statistical delay QoS provisioning. For that reason, in this paper, we will study the interference mitigation with statistical delay QoS guarantee in uplink two-tier orthogonal frequency division multiple access (OFDMA) femtocell networks. In order to mitigate the cross-tier interference at macrocell base station (MBS), we adopt a price-based power control strategy, in which the MBS protects itself by pricing the interference from FU. Additionally, to guarantee the statistical delay QoS for each FU, effective capacity is introduced into their utility functions. Then, a Stackelberg game is formulated to study the joint utility maximization of the MBS and the FUs subject to a maximum tolerable interference power constraint at the MBS. Subsequently, based on the mathematical analysis of the equilibrium of the formulated Stalkeberg game, a particle swarm optimization (PSO) aided power allocation (PSOPA) algorithm is proposed to solve this optimization problem. At last, simulation results show that our proposed PSOPA algorithm can not only improve significantly the average effective capacity of each FU and guarantee their statistical delay QoS, but also converge successfully. Keywords Femtocell Interference mitigation Delay QoS Effective capacity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700