Molecular analysis of hyperthermophilic endoglucanase Cel12B from Thermotoga maritima and the properties of its functional residues
详细信息    查看全文
  • 作者:Hao Shi (1) (2) (3)
    Yu Zhang (1) (2)
    Liangliang Wang (1) (2)
    Xun Li (1) (2)
    Wenqian Li (1) (2) (3)
    Xiangqian Li (3)
    Fei Wang (1) (2)
  • 关键词:Cellulose ; Conserved amino acid residues ; Endoglucanase ; Phylogenetic analysis ; Thermostability
  • 刊名:BMC Structural Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,250 KB
  • 参考文献:1. Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P: Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei . / Biomol Eng 2005,22(1-):89-4. CrossRef
    2. Liang C, Fioroni M, Rodriguez-Ropero F, Xue Y, Schwaneberg U, Ma Y: Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. / J Biotechnol 2011,154(1):46-3. CrossRef
    3. Anbar M, Lamed R, Bayer EA: Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution. / Chemcatchem 2010,2(8):997-003. CrossRef
    4. Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y: Directed evolution of endoglucanase III (Cel12A) from trichoderma reesei. / Appl Microbiol Biotechnol 2009,83(4):649-57. CrossRef
    5. Watanabe H, Noda H, Tokuda G, Lo N: A cellulase gene of termite origin. / Nature 1998,394(6691):330-31. CrossRef
    6. Davison A: Ancient origin of glycosyl hydrolase family 9 cellulase genes. / Mol Biol Evol 2005,22(5):1273-284. CrossRef
    7. Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG: The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales , and suggests an important ecological role in terrestrial acidic hot Springs. / Appl Environ Microbiol 2010,76(16):5652-657. CrossRef
    8. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ: Biogeography of the Sulfolobus islandicus pan-genome. / Proc Natl Acad Sci 2009,106(21):8605-610. CrossRef
    9. Guo L, Brugger K, Liu C, Shah SA, Zheng H, Zhu Y, Wang S, Lillestol RK, Chen L, Frank J, / et al.: Genome analyses of Icelandic strains of Sulfolobus islandicus , model organisms for genetic and virus-host interaction studies. / J Bacteriol 2011,193(7):1672-680. CrossRef
    10. G?ker M, Held B, Lapidus A, Nolan M, Spring S, Yasawong M, Lucas S, Glavina Del Rio T, Tice H, Cheng J-F, / et al.: Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1T). / Stand Genomic Sci 2010,3(1):66-5. CrossRef
    11. Angelov A, Liebl S, Ballschmiter M, Boemeke M, Lehmann R, Liesegang H, Daniel R, Liebl W: Genome sequence of the polysaccharide-degrading, thermophilic anaerobe Spirochaeta thermophila DSM 6192. / J Bacteriol 2010,192(24):6492-493. CrossRef
    12. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG: Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768 -/em> 20. / J Bacteriol 2011,193(12):3156-157. CrossRef
    13. Chen LM, Brugger K, Skovgaard M, Redder P, She QX, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, / et al.: The genome of Sulfolobus acidocaldarius , a model organism of the Crenarchaeota . / J Bacteriol 2005,187(14):4992-999. CrossRef
    14. Liu L-J, You X-Y, Zheng H, Wang S, Jiang C-Y, Liu S-J: Complete genome sequence of Metallosphaera cuprina , a metal sulfide-oxidizing archaeon from a hot spring. / J Bacteriol 2011,193(13):3387-388. CrossRef
    15. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, / et al.: A phylogeny-driven genomic encyclopaedia of bacteria and archaea. / Nature 2009,462(7276):1056-060. CrossRef
    16. Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I: Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. / Microbiol (Reading, England) 1996,142(Pt 9):2533-542. CrossRef
    17. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, / et al.: On the chimeric nature, thermophilic origin, and phylogenetic placement of the thermotogales. / Proc Natl Acad Sci U S A 2009,106(14):5865-870. CrossRef
    18. Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP. / Curr Protoc Bioinformatics 2003. Chaper 6, unit 6.4. http://www.currentprotocols.com/protocol/bi0604
    19. Chhabra SR, Shockley KR, Ward DE, Kelly RM: Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. / Appl Environ Microbiol 2002,68(2):545-54. CrossRef
    20. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y: A novel thermostable cellulase from Fervidobacterium nodosum . / J Mol Catal B Enzym 2010,66(3-):294-01. CrossRef
    21. Sinnott ML: Catalyic mechanisms of enzymatic glycosyl transfer. / Chem Rev 1990,90(7):1171-202. CrossRef
    22. Gaucher EA, Thomson JM, Burgan MF, Benner SA: Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. / Nature 2003,425(6955):285-88. CrossRef
    23. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG: Metabolic versatility and Indigenous origin of the archaeon Thermococcus sibiricus , isolated from a siberian oil reservoir, as revealed by genome analysis. / Appl Environ Microbiol 2009,75(13):4580-588. CrossRef
    24. Kumar S, Tsai CJ, Nussinov R: Factors enhancing protein thermostability. / Protein Eng 2000,13(3):179-91. CrossRef
    25. Warren GL, Petsko GA: Composition analysis of alpha-helices in thermophilic organisms. / Protein Eng 1995,8(9):905-13. CrossRef
    26. Kumar S, Bansal M: Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins. / Proteins 1998,31(4):460-76. CrossRef
    27. Kimura S, Kanaya S, Nakamura H: Thermostabilization of Escherichia coli ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn. / J Biol Chem 1992,267(31):22014-2017.
    28. Kawamura S, Kakuta Y, Tanaka I, Hikichi K, Kuhara S, Yamasaki N, Kimura M: Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus . / Biochemistry 1996,35(4):1195-200. CrossRef
    29. Watanabe K, Kitamura K, Suzuki Y: Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues. / Appl Environ Microbiol 1996,62(6):2066-073.
    30. Suzuki Y, Oishi K, Nakano H, Nagayama T: A strong correlation between the increase in mumber of proline resdues and the rise in thermostability of 5 Bacillus oligo-1,6-glucsidases. / Appl Microbiol Biotechnol 1987,26(6):546-51. CrossRef
    31. Zhu GP, Xu C, Teng MK, Tao LM, Zhu XY, Wu CJ, Hang J, Niu LW, Wang YZ: Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil. / Protein Eng 1999,12(8):635-38. CrossRef
    32. Suzuki Y: A general principle of increasing protein thermostability. / Proc Japan Acad Series B-Physl and Bio Sci 1989,65(6):146-48. CrossRef
    33. Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS: Crystal structure, at 2.6-A resolution, of the streptomyces lividans xylanase a, a member of the F family of beta-1,4-D-glycanases. / J bio chem 1994,269(33):20811-0814.
    34. Churakova NI, Cherkasov IA, Kravchenko NA: The role of the tryptophan-62 residue in the structure and function of lysozyme. / Biokhimii?a (Moscow, Russia) 1977,42(2):274-76.
    35. Pennacchio A, Esposito L, Zagari A, Rossi M, Raia CA: Role of Tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase. / Extremophiles 2009,13(5):751-61. CrossRef
    36. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, / et al.: Clustal W and clustal X version 2.0. / Bioinformatics 2007,23(21):2947-948. CrossRef
    37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Biol Evol 2011,28(10):2731-739. CrossRef
    38. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. / Nucleic Acids Res 2003,31(13):3381-385. CrossRef
    39. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. / Electrophoresis 1997,18(15):2714-723. CrossRef
    40. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. / Bioinformatics 2006,22(2):195-01. CrossRef
    41. Kaplan W, Littlejohn TG: Swiss-PDB viewer (deep view). / Brief Bioinform 2001,2(2):195-97. CrossRef
    42. Miller GL: Use of dinitrosalicylic acid reagent for determination of ruducing sugar. / Anal Chem 1959,31(3):426-28. CrossRef
  • 作者单位:Hao Shi (1) (2) (3)
    Yu Zhang (1) (2)
    Liangliang Wang (1) (2)
    Xun Li (1) (2)
    Wenqian Li (1) (2) (3)
    Xiangqian Li (3)
    Fei Wang (1) (2)

    1. College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
    2. Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
    3. Department of Life Science and Chemistry, Huaiyin Institute of Technology, Huaian, 223003, China
  • ISSN:1472-6807
文摘
Background Although many hyperthermophilic endoglucanases have been reported from archaea and bacteria, a complete survey and classification of all sequences in these species from disparate evolutionary groups, and the relationship between their molecular structures and functions are lacking. The completion of several high-quality gene or genome sequencing projects provided us with the unique opportunity to make a complete assessment and thorough comparative analysis of the hyperthermophilic endoglucanases encoded in archaea and bacteria. Results Structure alignment of the 19 hyperthermophilic endoglucanases from archaea and bacteria which grow above 80°C revealed that Gly30, Pro63, Pro83, Trp115, Glu131, Met133, Trp135, Trp175, Gly227 and Glu229 are conserved amino acid residues. In addition, the average percentage composition of residues cysteine and histidine of 19 endoglucanases is only 0.28 and 0.74 while it is high in thermophilic or mesophilic one. It can be inferred from the nodes that there is a close relationship among the 19 protein from hyperthermophilic bacteria and archaea based on phylogenetic analysis. Among these conserved amino acid residues, as far as Cel12B concerned, two Glu residues might be the catalytic nucleophile and proton donor, Gly30, Pro63, Pro83 and Gly227 residues might be necessary to the thermostability of protein, and Trp115, Met133, Trp135, Trp175 residues is related to the binding of substrate. Site-directed mutagenesis results reveal that Pro63 and Pro83 contribute to the thermostability of Cel12B and Met133 is confirmed to have role in enhancing the binding of substrate. Conclusions The conserved acids have been shown great importance to maintain the structure, thermostability, as well as the similarity of the enzymatic properties of those proteins. We have made clear the function of these conserved amino acid residues in Cel12B protein, which is helpful in analyzing other undetailed molecular structure and transforming them with site directed mutagenesis, as well as providing the theoretical basis for degrading cellulose from woody and herbaceous plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700