Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms
详细信息    查看全文
  • 作者:Xiangrong Li ; Tianjun Ni
  • 关键词:Pepsin ; Glutathione ; Melatonin ; Isothermal titration calorimetry ; Equilibrium microdialysis ; Spectroscopy
  • 刊名:European Biophysics Journal
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:165-174
  • 全文大小:854 KB
  • 参考文献:Andersson LO, Rehnstrom A, Eaker DL (1971) Studies on “nonspecific” binding, the nature of the binding of fluorescein to bovine serum albumin. Eur J Biochem 20:371–380CrossRef PubMed
    Bains G, Freire E (1991) Calorimetric determination of cooperative interactions in high affinity binding processes. Anal Biochem 192:203–206CrossRef PubMed
    Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Asp Med 30:13–28CrossRef
    Campos LA, Sancho J (2003) The active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH. FEBS Lett 538:89–95CrossRef PubMed
    Chai J, Xu Q, Dai J, Liu R (2013) Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim Acta A 105:200–206CrossRef
    Chakraborty T, Chakraborty I, Moulik SP, Ghosh S (2007) Physicochemical studies on pepsin–CTAB interaction: energetics and structural changes. J Phys Chem B 111:2736–2746CrossRef PubMed
    Cheng Z (2012) Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods. J Lumin 132:2719–2729CrossRef
    Chi Z, Liu R (2011) Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 12:203–209CrossRef PubMed
    Chi Z, Liu R, Zhang H (2010) Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules 11:2454–2459CrossRef PubMed
    Deaville ER, Green RJ, Mueller-Harvey I, Willoughby I, Frazier RA (2007) Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Food Chem 55:4554–4561CrossRef PubMed
    Dobreva MA, Frazier RA, Mueller-Harvey I, Clifton LA, Gea A, Green RJ (2011) Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules 12:710–715CrossRef PubMed
    Esfandiar A, Akhavan O, Irajizad A (2011) Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J Mater Chem 21:10907–10914CrossRef
    Freire E, Mayorgal OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–958ACrossRef
    Gekko K, Yonehara R, Sakurada Y, Matsuo K (2005) Structure analyses of biomolecules using a synchrotron radiation circular dichroism spectrophotometer. J Electron Spectrosc 144–147:295–297CrossRef
    Gole A, Dash C, Rao M, Sastry M (2000) Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chem Commun 16:297–298CrossRef
    Gonçalves R, Mateus N, Freitas VD (2011) Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. J Agric Food Chem 59:11794–11802CrossRef PubMed
    Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890PubMedCentral CrossRef PubMed
    He Q, Lv Y, Yao K (2006) Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem 101:1178–1182CrossRef
    Jin KS, Rho Y, Kim J, Kim H, Kim IJ, Ree M (2008) Synchrotron small-angle X-ray scattering studies of the structure of porcine pepsin under various pH conditions. J Phys Chem B 112:15821–15827CrossRef PubMed
    Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agric Food Chem 61:913–919CrossRef PubMed
    Kaya Y, Sarıkcıoğlu L, Aslan M, Kencebay C, Demir N, Derin N, Angelov DN, Yıldırım FB (2013) Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Childs Nerv Syst 29:389–401CrossRef PubMed
    Koo SH, Lee JS, Kim GH, Lee HG (2011) Preparation, characteristics, and stability of glutathione-loaded nanoparticles. J Agric Food Chem 59:11264–11269CrossRef PubMed
    Kuznetsova IM, Sulatskayal AI, Povaroval OI, Turoverov KK (2012a) Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand–receptor binding characterization. PLoS ONE 7:e40845PubMedCentral CrossRef PubMed
    Kuznetsova IM, Sulatskaya AI, Uversky VN, Turoverov KK (2012b) A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils. Mol Neurobiol 45:88–498
    Li X, Wang S (2015) Binding of glutathione and melatonin to human serum albumin: a comparative study. Colloids Surf B 125:96–103CrossRef
    Li X, Yang Z (2015) Dissection of the binding of l -ascorbic acid to trypsin and pepsin using isothermal titration calorimetry, equilibrium microdialysis and spectrofluorimetry. RSC Adv 5:35487–35496CrossRef
    Li H, Pu J, Wang Y, Liu C, Yu J, Li T, Wang R (2013) Comparative study of the binding of trypsin with bifendate and analogs by spectrofluorimetry. Spectrochim Acta A 115:1–11CrossRef
    Lopes P, Kataky R (2012) Chiral interactions of the drug propranolol and α1-acid-glycoprotein at a micro liquid–liquid interface. Anal Chem 84:2299–2304CrossRef PubMed
    Lu Y, Chen DJ, Wang GK, Yan CL (2009) Study of interactions of bovine serum albumin in aqueous (NH4)2SO4 solution at 25 °C by osmotic pressure measurements. J Chem Eng Data 54:1975–1980CrossRef
    Matsuo K, Yonehara R, Gekko K (2004) Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem 135:405–411CrossRef PubMed
    Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K (2007) Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys J 92:4088–4096PubMedCentral CrossRef PubMed
    Mu Y, Lin J, Liu R (2011) Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim Acta A 83:130–135CrossRef
    Nielsen AD, Borch K, Westh P (2000) Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochim Biophys Acta 1479:321–331CrossRef PubMed
    Noh HB, Chandra P, Moon JO, Shim YB (2012) In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 33:2600–2607CrossRef PubMed
    Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chem Acta 333:19–39CrossRef
    Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des 74:101–120CrossRef PubMed
    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102CrossRef PubMed
    Shen L, Xu H, Huang F, Li Y, Xiao H, Yang Z, Hu Z, He Z, Zeng Z, Li Y (2015) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta A 135:256–263CrossRef
    Spelzini D, Peleteiro J, Picó G, Farruggia B (2008) Polyethyleneglycol–pepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids Surf B 67:151–156CrossRef
    Sulatskaya AI, Kuznetsova IM, Turoverov KK (2011) Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B 115:11519–11524CrossRef PubMed
    Tamura T, Terada T, Tanaka A (2003) A quantitative analysis and chemical approach for the reduction of nonspecific binding proteins on affinity resins. Bioconjugate Chem 14:1222–1230CrossRef
    Wang Q, Guan Y, Yang M (2012) Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione. J Magn Magn Mater 324:3300–3305CrossRef
    Wang G, Yan C, Lu Y (2013a) Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives. Colloids Surf B 106:28–36CrossRef
    Wang R, Xie Y, Zhang Y, Kang X, Wang X, Ge B, Chang J (2013b) Comparative study of the binding of pepsin to four alkaloids by spectrofluorimetry. Spectrochim Acta A 108:62–74CrossRef
    Zhang HM, Wang YQ, Zhou QH (2010) Fluorimetric study of interaction of benzidine with trypsin. J Lumin 130:781–786CrossRef
  • 作者单位:Xiangrong Li (1)
    Tianjun Ni (1)

    1. Department of Chemistry, School of Basic Medicine, Xinxiang Medical University, 601 Jin-sui Road, Hong Qi District, Xinxiang, 453003, Henan, People’s Republic of China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Cell Biology
    Biochemistry
    Plant Physiology
    Animal Physiology
    Neurobiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1017
文摘
Glutathione is a hydrophilic antioxidant and melatonin is a hydrophobic antioxidant, thus, the binding mechanism of the two antioxidants interacting with protease may be different. In this study, binding of glutathione and melatonin to pepsin has been studied using isothermal titration calorimetry (ITC), equilibrium microdialysis, UV–Vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. Thermodynamic investigations reveal that the binding of glutathione/melatonin to pepsin is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bond and van der Waals force. ITC, equilibrium microdialysis, and molecular modeling reveal that the binding of glutathione to pepsin is characterized by a high number of binding sites. For melatonin, one molecule of melatonin combines with one molecule of pepsin. These results confirm that glutathione/melatonin interact with pepsin through two different binding mechanisms. In addition, the UV–Vis absorption and CD experiments indicate that glutathione and melatonin may induce conformational and microenvironmental changes of pepsin. The conformational changes of pepsin may affect its biological function as protease. Keywords Pepsin Glutathione Melatonin Isothermal titration calorimetry Equilibrium microdialysis Spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700