MicroRNA-181a Functions as an Oncomir in Gastric Cancer by Targeting the Tumour Suppressor Gene ATM
详细信息    查看全文
  • 作者:Xiangyang Zhang (1)
    Yuqiang Nie (2)
    Xiaorong Li (3)
    Guifu Wu (3)
    Qun Huang (3)
    Jie Cao (2)
    Yanlei Du (2)
    Junda Li (4)
    Ruoyu Deng (4)
    Dongshen Huang (5)
    Baozhi Chen (6)
    Shang Li (7)
    Baojun Wei (8)
  • 关键词:miR ; 181a ; micro ; RNA ; Gastric cancer ; Target gene ; ATM
  • 刊名:Pathology & Oncology Research
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:20
  • 期:2
  • 页码:381-389
  • 全文大小:2,857 KB
  • 参考文献:1. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137鈥?150
    2. Tamura G (2006) Alterations of tumour suppressor and tumour-related genes in the development and progression of gastric cancer. World J Gastroenterol 12(2):192鈥?98
    3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281鈥?97
    4. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259鈥?69
    5. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524鈥?5529
    6. Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271鈥?277
    7. Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosisin gastric cancer. Cancer Cell 13(3):272鈥?86
    8. Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycleinhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672鈥?681
    9. Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastriccancer: a microRNA expression analysis. Lancet Oncol 11(2):136鈥?46
    10. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (80-) 303(5654):83鈥?6
    11. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147鈥?61
    12. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21(5):578鈥?89
    13. Kazenwadel J, Michael MZ, Harvey NL (2010) Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116(13):2395鈥?401
    14. Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalianmyoblast differentiation. Nat Cell Biol 8(3):278鈥?84
    15. Marcucci G, Radmacher MD, Maharry K et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919鈥?928
    16. Pallasch CP, Patz M, Park YJ et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogenePLAG1 in chronic lymphocytic leukemia. Blood 114(15):3255鈥?264
    17. Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105(35):12885鈥?2890
    18. Wang Y, Yu Y, Tsuyada A et al (2011) Transforming growth factor-beta regulates the sphere-initiating stem cell-likefeature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470鈥?480
    19. Ji J, Yamashita T, Budhu A et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player inEpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472鈥?80
    20. Bhattacharya SD, Garrison J, Guo H et al (2010) Micro-RNA-181a regulates osteopontin-dependent metastatic function inhepatocellular cancer cell lines. Surgery 148(2):291鈥?97
    21. Yao Y, Suo AL, Li ZF et al (2009) MicroRNA profiling of human gastric cancer. Mol Med Report 2(6):963鈥?70
    22. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for ATM in ionizing radiation-induced cell death in the developingcentral nervous system. Science (80-) 280(5366):1089鈥?091
    23. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584(17):3675鈥?681
    24. Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813鈥?22
    25. Mandriota SJ, Buser R, Lesne L et al (2010) Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary glandepithelial cells. J Biol Chem 285(17):13092鈥?3106
    26. Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY (2008) Expression status of ataxia-telangiectasia-mutated gene correlated with prognosisin advanced gastric cancer. Mutat Res 638(1鈥?):17鈥?5
    27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(鈭扗elta Delta C(T)) Method. Methods 25(4):402鈥?08
    28. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787鈥?98
    29. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495鈥?00
    30. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149鈥揇153
    31. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76鈥?5
    32. Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44(6):556鈥?61
    33. O鈥橠onnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839鈥?43
    34. Tchernitsa O, Kasajima A, Schafer R et al (2010) Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 222(3):310鈥?19
    35. Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351鈥?358
    36. Gao W, Yu Y, Cao H et al (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lungcancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64(6):399鈥?08
    37. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011) miR-181a shows tumour suppressive effect against oral squamous cell carcinomacells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896鈥?02
    38. Jazdzewski K, Boguslawska J, Jendrzejewski J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAsderegulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96(3):E546鈥揈553
    39. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S (2011) Impaired microRNA processing facilitates breast cancer cell invasion by up regulating urokinase-type plasminogen activator expression. Genes Cancer 2(2):140鈥?50
    40. Toller IM, Neelsen KJ, Steger M et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strandbreaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944鈥?4949
    41. Zhu KQ, Zhang SJ (2003) Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest. World J Gastroenterol 9(9):2073鈥?077
    42. Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6(8):931鈥?42
    43. Bartkova J, Bakkenist CJ, Rajpert-De ME et al (2005) ATM activation in normal human tissues and testicular cancer. Cell Cycle 4(6):838鈥?45
    44. Song SY, Kang MR, Yoo NJ, Lee SH (2010) Mutational analysis of mononucleotide repeats in dual specificity tyrosinephosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS 118(5):389鈥?93
  • 作者单位:Xiangyang Zhang (1)
    Yuqiang Nie (2)
    Xiaorong Li (3)
    Guifu Wu (3)
    Qun Huang (3)
    Jie Cao (2)
    Yanlei Du (2)
    Junda Li (4)
    Ruoyu Deng (4)
    Dongshen Huang (5)
    Baozhi Chen (6)
    Shang Li (7)
    Baojun Wei (8)

    1. Department of Gastroenterology, Shenzhen Futian Hospital of TCM, No. 6001 North Central Avenue of Futian, Shenzhen, China, 518034
    2. Department of Gastroenterology, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First Municipal People鈥檚 Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, China, 510180
    3. Department of Gastroenterology, The Fourth People鈥檚 Hospital of Shenzhen City (Futian Hospital), No. 3025 Middle Shennan Road, Shenzhen, China, 518033
    4. Department of Gastroenterology, People鈥檚 Hospital Of New District Longhua Shenzhen, Jianshe East Road of Longhua New City, Shenzheng, China, 518019
    5. Guangzhou Chest Hospital, Guangzhou, China, 510180
    6. Second People鈥檚 Hospital of Lanzhou City, Lanzhou, China, 730046
    7. Jiuquan City Health School, Lanzhou, China, 735000
    8. Lanzhou Xigu People鈥檚 Hospital, Lanzhou, China, 730060
  • ISSN:1532-2807
文摘
Based on our previous experiments, this study is to further investigate the functional significance of miR-181a and its target gene in gastric cancer. Expression of miR-181a was detected by qRT-PCR in three normal gastric tissues and three human gastric cancer cell lines (SGC-7901, MGC-803, and BGC-823 cells). After transfection with miR-181a inhibitor, proliferation, apoptosis, migration, and invasion of the SGC-7901 cells were evaluated. Ataxia-telangiectasia mutation (ATM) was predicted as a target gene of miR-181a with bioinformatics analysis, and was verified by lucifersae reporter assay. Expression of ATM protein in HEK293T cells and tissues was measured by Western Blot. Expression of ATM mRNA in HEK293T cells was measured by RT-PCR. Compared with three non-tumour tissues, the expression of miR-181a in three gastric cancer cells was significantly increased by 26.68, 14.83 and 14.96 folds; Compared with Negative Control(NC) and blank groups, transfection of miR-181a inhibitor led to inhibition of SGC7901 cell proliferation, invasion, and migration as well as promotion of apoptosis. A luciferase reporter assay demonstrated that ATM was a direct target of miR-181a, miR-181a mimics transfection down regulated ATM mRNA and protein expression. There was inverse correlation between miR-181a and ATM protein expression in gastric cancer and normal gastric tissues. Our study demonstrates that over-expression of miR-181a might be involved in development of gastric cancer by promoting proliferation and inhibiting apoptosis probably through directly targeting ATM. miR-181a modulation may be a potential strategy for the development of miRNA-based therapy of gastric cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700