Quantifying the spatial variability of rainfall and flow routing on flood response across scales
详细信息    查看全文
  • 作者:Guo Weijian ; Wang Chuanhai ; Zeng Xianmin ; Ma Tengfei…
  • 关键词:Spatial variability ; Scale effect ; Variability framework ; Dominant process concept
  • 刊名:Environmental Earth Sciences
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:74
  • 期:8
  • 页码:6421-6430
  • 全文大小:1,214 KB
  • 参考文献:Arnaud P, Bouvier C, Cisneros L, Dominguez R (2002) Influence of rainfall spatial variability on flood prediction. J Hydrol 260(1-):216-30CrossRef
    Arora VK, Chiew FHS, Grayson RB (2001) Effect of sub-grid-scale variability of soil moisture and precipitation intensity on surface runoff and streamflow. J Geophys Res 106(D15):17073-7091CrossRef
    Beven K (1999) How far can we go in distributed hydrological modelling? Hydrol Earth Syst Sci 5(1):1-2CrossRef
    Bl?schl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Process 9(3-):251-90CrossRef
    Bl?schl G, Reszler C, Komma J (2008) A spatially distributed flash flood forecasting model. Environ Model Softw 23(4):464-78CrossRef
    Botter G Rinaldo A (2003) Scale effect on geomorphologic and kinematic dispersion. Water Resour Res 39(10)
    D’Odorico P, Rigon R (2003) Hillslope and channel contributions to the hydrologic response. Water Resour Res 39(5)
    Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ (2008) Field observations of soil moisture variability across scales. Water Resour Res 44(1)
    Gabellani S, Boni G, Ferraris L, von Hardenberg J, Provenzale A (2007) Propagation of uncertainty from rainfall to runoff: a case study with a stochastic rainfall generator. Advances In Water Resour 30(10):2061-071CrossRef
    Goodrich DC, Schmugge TJ, Jackson TJ, Unkrich CL, Keefer TO, Parry R, Bach LB, Amer SA (1994) Runoff simulation sensitivity to remotely sensed initial soil water content. Water Resour Res 30(5):1393-405CrossRef
    Grayson R, Bl?schl G (2001) Spatial patterns in catchment hydrology: observations and modelling, Cambridge University Press
    Hardie M, Lisson S, Doyle R, Cotching W (2013) Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring. J Contam Hydrol 144(1):66-7CrossRef
    Huang Y, Zhou Z, Wang J, Dou Z, Guo Q (2014) Spatial and temporal variability of the chemistry of the shallow groundwater in the alluvial fan area of the Luanhe river, North China. Environ Earth Sci 72(12):5123-137CrossRef
    Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54(11):1593-600
    Kang B, Ramírez JA (2010) A coupled stochastic space-time intermittent random cascade model for rainfall downscaling. Water Resour Res 46(10)
    Koren VI, Finnerty BD, Schaake JC, Smith MB, Seo DJ, Duan QY (1999) Scale dependencies of hydrologic models to spatial variability of precipitation. J Hydrol 217(3-):285-02CrossRef
    Lázaro JM, Navarro JáS, Gil AG, Romero VE (2014) Sensitivity analysis of main variables present in flash flood processes. Application in two Spanish catchments: Arás and Aguilón. Environ. Earth Sci 71(6):2925-939CrossRef
    Liu J, Chen X, Zhang J, Flury M (2009) Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol Process 23(9):1337-348CrossRef
    Maidment D, Olivera F, Calver A, Eatherall A, Fraczek W (1996) Unit hydrograph derived from a spatially distributed velocity field. Hydrol Process 10(6):831-44CrossRef
    Mateo Lázaro J, Sánchez Navarro J, García Gil A, Edo Romero V (2014) Sensitivity analysis of main variables present in flash flood processes. Application in two Spanish catchments: Arás and Aguilón. Environ Earth Sci 71(6):2925-939CrossRef
    Mazzilli N, Jourde H, Jacob T, Guinot V, Le Moigne N, Boucher M, Chalikakis K, Guyard H, Legtchenko A (2013) On the inclusion of ground-based gravity measurements to the calibration process of a global rainfall-discharge reservoir model: case of the Durzon karst system (Larzac, southern France). Environ Earth Sci 68(6):1631-646CrossRef
    McDonnell JJ, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J, Weiler M (2007) Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour Res 43(7)
    McMillan H, Gueguen M, Grimon E, Woods R, Clark M, Rupp DE (2014) Spatial variability of hydrological processes and model structure diagnostics in a 50?km2 catchment. Hydrol Process 28(18):4896-913CrossRef
    Nicótina L, Alessi Celegon E, Rinaldo A, Marani M (2008) On the impact of rainfall patterns on the hydrologic response. Water Resour Res 44(12)
    Over TM, Gupta VK (1996) A space-time theory of mesoscale rainfall using random cascades. J Geophys Res 101(D21):26319CrossRef
    Paschalis A, Fatichi S, Molnar P, Rimkus S, Burlando P (2014) On the effects of small scale space–time variability of rainfall on basin flood response. J Hydrol 514:313-27CrossRef
    Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-J, DMIP Participants (2004) Overall distributed model intercomparison project results. J Hydrol 298(1-):27-0CrossRef
    Robinson JS, Sivapalan M, Snell JD (1995) On the relative roles of hillslope processes, channel rou
  • 作者单位:Guo Weijian (1) (2)
    Wang Chuanhai (1) (2)
    Zeng Xianmin (1) (2)
    Ma Tengfei (1) (2)
    Yang Hai (1) (2)

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
    2. College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The different spatial patterns of hydrologic processes always lead to different flood responses, and this effect varies with environment and scale. In this paper, we evaluate the sensitivity of hydrologic response to the spatial variability of rainfall and flow routing by a variability framework, which explicitly expresses the main features of hydrology in terms of the spatial–temporal variability of rainfall, runoff and flow routing. For a more general conclusion, a stochastic rainfall generator is used as input of the variability framework. We perform the numerical experiments at the Yanduhe Basin and its 64 subcatchments, with area ranging over three orders of magnitude. The results suggest that the sensitivity of hydrologic response to the spatial variability of rainfall depends on the characteristics of rainfall and antecedent soil moisture. The contribution of spatial variability of rainfall reaches the peak in the case of relatively small rainfall event or antecedent dry condition. Influenced by the characteristics of local rainfall, the contribution of spatial variability increases with the subcatchment size at the Yanduhe Basin. The hillslope routing is dominant for slow runoff or small catchment. With the increasing of flow velocity and catchment size, the importance of channel routing significantly increases. Keywords Spatial variability Scale effect Variability framework Dominant process concept

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700