An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems
详细信息    查看全文
  • 作者:Jie Luo ; Shihua Qi ; X. W. Sophie. Gu ; Jinji Wang ; Xianming Xie
  • 关键词:Eucalyptus globulus ; Cicer arietinum ; Phytoremediation ; Heavy metals ; EDTA
  • 刊名:Ecotoxicology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:646-654
  • 全文大小:501 KB
  • 参考文献:Arbaoui S, Evlard A, Mhamdi MEW, Campanella B, Paul R, Bettaieb T (2013) Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation 24:563–567CrossRef
    Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manag 84:93–99CrossRef
    Campos D, Alves A, Lemos MFL, Correia A, Soares AMWM, Pestana JLT (2014) Effects of cadmium and resource quality on freshwater detritus processing chains: a microcosm approach with two insect species. Ecotoxicology 23:830–839CrossRef
    Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231:36–42CrossRef
    Chen YH, Shen ZG, Li XD (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565CrossRef
    Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90:2542–2548CrossRef
    China MEP (2008) Environmental quality standards for soils, GB 15618-2008. Beijing, China, 4–5
    Cui LM, Wang YG, Gao L, Hu LH, Yan LG, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10CrossRef
    Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155CrossRef
    Gonçalves J, Stape J, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South For 70:105–118
    Han YL, Huang SZ, Yuan HY, Zhao JZ, Gu JG (2013) Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings. Ecotoxicology 22:1033–1042CrossRef
    Huang YZ, Zhu YG, Hu Y, Liu YX (2006) Absorption and accumulation of Pb, Cd by corn, lupin and chickpea in intercropping systems. Acta Ecol Sin 26:1478–1485CrossRef
    Jiang ZF, Huang SZ, Han YL, Zhao JZ, Fu JJ (2012) Physiological response of Cu and Cu mine tailing remediation of Paulownia fortunei (Seem) Hemsl. Ecotoxicology 21:759–767CrossRef
    Jose S, Williams R, Zamora D (2006) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manag 233:231–239CrossRef
    Juang KW, Lai HY, Chen BC (2011) Coupling bioaccumulation and phytotoxicity to predict copper removal by switchgrass grown hydroponically. Ecotoxicology 20:827–835CrossRef
    Lahrouni M, Oufdou K, Faghire M, Peix A, El Khalloufi F, Vasconcelos V, Oudra B (2012) Cyanobacterial extracts containing microcystins affect the growth, nodulation process and nitrogen uptake of faba bean (Vicia faba L., Fabaceae). Ecotoxicology 21:681–687CrossRef
    Lou YH, Luo HJ, Hu T, Li HY, Fu JM (2013) Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology 22:207–214CrossRef
    Macci C, Doni S, Peruzzi E, Bardella S, Filippis G, Ceccanti B, Masciandaro G (2013) A real-scale soil phytoremediation. Biodegradation 24:521–538CrossRef
    Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—effects on phytoremediation strategies. Chemosphere 92:74–83CrossRef
    Niazi NK, Singh B, Zwieten LV, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19:3506–3515CrossRef
    Padmavathiamma PK, Li LY (2007) Phytoremediation Technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRef
    Peng XC, Yang B, Deng DM, Dong JH, Chen ZL (2012) Lead tolerance and accumulation in three cultivars of Eucalyptus urophyllaXE.grandis: implication for phytoremediation. Environ Earth Sci 67:1515–1520CrossRef
    Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700CrossRef
    Secher C, Lollier M, Jézéquel K, Cornu JY, Amalric L, Lebeau T (2013) Decontamination of a polychlorinated biphenyls-contaminated soil by phytoremediation-assisted bioaugmentation. Biodegradation 24:549–562CrossRef
    Song XY, Hu XJ, Ji PH, Li YS, Chi GY, Song YF (2012) Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla. Bull Environ Contam Toxicol 88:623–626CrossRef
    Souza SCR, Andrade SAL, Souza LA, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage 110:299–307CrossRef
    Suchkova N, Tsiripidis I, Alifragkis D, Ganoulis J, Darakas E, Sawidis Th (2014) Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecol Eng 69:160–169CrossRef
    Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154CrossRef
    USEPA (1992) Framework for ecological risk assessment. EPA/630/R-92/001, Washington
    Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRef
    Wang XD, Zang SY (2014) Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilongjiang Province, China. Ecotoxicology 23:609–617CrossRef
    Wang HH, Shan XQ, Liu T, Xie YN, Wen B, Zhang SZ, Han F, Genuchten MT (2007) Organic acids enhance the uptake of lead by wheat roots. Planta 225:1483–1494CrossRef
    Wang GH, Wang Y, Hu SH, Deng NS, Wu F (2015) Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead. Environ Sci Pollut Res. doi:10.​1007/​s11356-015-4210-7
    Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318CrossRef
    Wu EGL, Zhang BJ, Zhang JS, Ali MJ (2008) Effect of planting density on growth characters, yield and quality of chickpeas (Cicer arietinum L.). Agric Res Arid Areas 26:95–99
    Yu XZ, Gu JD (2008) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17:143–152CrossRef
  • 作者单位:Jie Luo (1) (3)
    Shihua Qi (1)
    X. W. Sophie. Gu (2)
    Jinji Wang (3)
    Xianming Xie (3)

    1. China University of Geosciences, Wuhan, 430074, China
    3. Guangdong Hydrogeology Battalion, Guangzhou, 510510, China
    2. The University of Melbourne, Victoria, VIC, 3010, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-3017
文摘
Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg−1), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700