Phytoremediation Potential of Cadmium-Contaminated Soil by Eucalyptus globulus Under Different Coppice Systems
详细信息    查看全文
  • 作者:Jie Luo (1) (2)
    Shihua Qi (1)
    Li Peng (1)
    Xianming Xie (2)

    1. China University of Geosciences
    ; Wuhan ; 430074 ; China
    2. Guangdong Hydrogeology Battalion
    ; Guangzhou ; 510510 ; China
  • 关键词:Eucalyptus globulus ; Phytoremediation ; Cadmium ; Biomass
  • 刊名:Bulletin of Environmental Contamination and Toxicology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:94
  • 期:3
  • 页码:321-325
  • 全文大小:188 KB
  • 参考文献:1. Alia H, Khanb E, Sajadc MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91:869鈥?81 CrossRef
    2. Arriagada CA, Herrera MA, Garcia RI, Ocampo JA (2004) Tolerance to Cd of soybean ( / Glycine max) and eucalyptus ( / Eucalyptus globulus) inoculated with arbuscular mycorrhizal and saprobe fungi. Symbiosis 36:1鈥?5
    3. Arriagada CA, Herrerab MA, Ocampoc JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of / Eucalyptus globulus co-cultured with / Glycine max in soil contaminated with heavy metals. J Environ Manag 84:93鈥?9 CrossRef
    4. Bullard MJ, Mustill SJ, Carver P, Nixon PMI (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice / Salix spp.鈥?. Resource capture and use in two morphologically diverse varieties. Biomass Bioenergy 22(1):27鈥?9 CrossRef
    5. Cruzado CP, Merino A, Soalleiro RR (2011) A management tool for estimating bioenergy production and carbon sequestration in / Eucalyptus globulus and / Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenergy 35:2839鈥?851 CrossRef
    6. Das S, Goswami S, Talukdar AD (2014) A study on cadmium phytoremediation potential of water lettuce, / Pistia stratiotes L. Bull Environ Contam Toxicol 92:169鈥?74 CrossRef
    7. Deng WJ, Louie PKK, Liu WK, Bi XH, Fu JM, Wong MH (2006) Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM 2.5 at an electronic waste recycling site in southeast China. Atmos Environ 40:6945鈥?955 CrossRef
    8. Gominho J, Lourenco A, Miranda I, Pereira H (2012) Chemical and fuel properties of stumps biomass from / Eucalyptus globulus plantations. Ind Crops Prod 39:12鈥?6 CrossRef
    9. Gonzalez R, Treasure T, Phillips R, Jameel H, Saloni D, Abt R, Wright J (2011) Converting / Eucalyptus biomass into ethanol: financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass Bioenergy 35:767鈥?72 CrossRef
    10. Guo LB, Simsa REH, Horneb DJ (2002) Biomass production and nutrient cycling in / Eucalyptus short rotation energy forests in New Zealand. I: biomass and nutrient accumulation. Bioresour Technol 85:273鈥?83 CrossRef
    11. Hillis WE (1990) Fast growing / Eucalyptus and some of their characteristics. In: Werner D, Muller P (eds) Fast growing trees and nitrogen fixing trees. Gustav Fischer Verlag, Stuttgart, pp 184鈥?93
    12. Kidda P, Barcel贸 J, Bernal MP, Izzo FN, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root鈥搒oil interface: implications in phytoremediation. Environ Exp Bot 67:243鈥?59 CrossRef
    13. Kuklin AP, Matafonov PV (2014) Background concentrations of heavy metals in benthos from transboundary rivers of the transbaikalia region, Russia. Bull Environ Contam Toxicol 92:137鈥?42 CrossRef
    14. Li NY, Li ZA, Fu QL, Zhuang P, Guo B, Li H (2013) Agricultural technologies for enhancing the phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus L. Water Air Soil Pollut 224:1673鈥?681 CrossRef
    15. Mahdieh M, Yazdani M, Mahdieh S (2013) The high potential of / Pelargonium roseum plant for phytoremediation of heavy metals. Environ Monit Assess 185:7877鈥?881 CrossRef
    16. Matthews RW (2001) Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass Bioenergy 21:1鈥?9 CrossRef
    17. Mughini G, Alianiello F, Benedetti A, Gras LM, Gras MA, Salvati L (2013) Clonal variation in growth, arsenic and heavy metal uptakes of hybrid / Eucalyptus clones in a mediterranean environment. Agrofor Syst 87:755鈥?66 CrossRef
    18. Pe麓rez S, Renedo CJ, Ortiz A, Man藴ana M (2008) Energy potential of waste from 10 forest species in the North of Spain (Cantabria). Bioresour Technol 99:6339鈥?345 CrossRef
    19. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees鈥攁 review. Environ Int 29:529鈥?40 CrossRef
    20. Rafiq MT, Aziza R, Yang XE, Xiao ED, Rafiq MK, Alid B, Li TQ (2014) Cadmium phytoavailability to rice ( / Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101鈥?07 CrossRef
    21. Ralph EHS, Senelwa K, Maiava T, Bullock BT (1999) / Eucalyptus species for biomass energy in New Zealand鈥擯art II: coppice performance. Biomass Bioenergy 17:333鈥?43 CrossRef
    22. Saghali M, Hoseini SM, Hosseini SA, Baqraf R (2014) Determination of heavy metal (Zn, Pb, Cd and Cr) concentration in benthic fauna tissues collected from the southeast Caspian Sea, Iran. Bull Environ Contam Toxicol 92:57鈥?0 CrossRef
    23. 脺莽眉nc眉 E, Tunca E, Fikirde艧ici S, 脰zkan AD, Alt谋nda臒 A (2013) Phytoremediation of Cu, Cr and Pb mixtures by lemna minor. Bull Environ Contam Toxicol 91:600鈥?04 CrossRef
    24. Walle IV, Camp NV, Casteele LVD, Verheyenb K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I鈥攂iomass production after 4聽years of tree growth. Biomass Bioenergy 31:267鈥?75 CrossRef
    25. Wang Q, Cui Y, Dong Y (2002) Phytoremediation of polluted water: potentials and prospects of wetland plants. Acta Biotechnol 22:199鈥?08 CrossRef
    26. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator / Thlaspi caerulescens. Plant Soil 249:37鈥?3 CrossRef
    27. Zhao FL, Liu CF, Rafiq MT, Ding ZL, Zeng Z, Aziz R, Yang XE (2014) Screening wetland plants for nutrient uptake and bioenergy feedstock production. Int J Agric 16:213鈥?16
  • 刊物主题:Pollution, general; Environmental Health; Ecotoxicology; Soil Science & Conservation; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution;
  • 出版者:Springer US
  • ISSN:1432-0800
文摘
The objective of this research was to determine the phytoremediation potential of Eucalyptus globulus in Cd contaminated soil through two different harvest methods. Although replanting is more expensive than coppicing and produces less aboveground biomass, more Cd can be removed from the soil with roots removal at each harvest as the E. globulus absorbs vast majority of heavy metals in non-metabolically active parts like roots. Despite the higher cost of replanting in a single harvest, when phytoremediation efficiency and total duration are considered as important factors, the replanting treatment should be recommended as an appropriate method which can decrease the phytoremediation time obviously.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700