Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding
详细信息    查看全文
  • 作者:Meng-Jun Hu ; Xiao-Xia Shao ; Jia-Hui Wang ; Dian Wei ; Ya-Li Liu ; Zeng-Guang Xu
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:48
  • 期:9
  • 页码:2227-2236
  • 全文大小:2,538 KB
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
  • 卷排序:48
文摘
Relaxin-3 is an insulin/relaxin superfamily neuropeptide implicated in the regulation of food intake and stress response via activation of the G protein-coupled receptor RXFP3. Their electrostatic interactions have been recently identified, and involves three positively charged B-chain residues (B12Arg, B16Arg, and B26Arg) of relaxin-3 and two negatively charged residues (Glu141 and Asp145) in a highly conserved ExxxD motif at the extracellular end of the second transmembrane domain of RXFP3. To investigate their hydrophobic interactions, in the present work we deleted the highly conserved B-chain C-terminal B27Trp residue of relaxin-3, and mutated four highly conserved aromatic residues (Phe137, Trp138, Phe146, and Trp148) around the ExxxD motif of RXFP3. The resultant [∆B27W]relaxin-3 exhibited approximately tenfold lower binding potency and ~1000-fold lower activation potency towards wild-type RXFP3, confirming its importance for relaxin-3 function. Although the RXFP3 mutants could be normally trafficked to cell membrane, they had quite different activities. [F137A]RXFP3 could normally distinguish wild-type relaxin-3 and [∆B27W]relaxin-3 in binding and activation assays, whereas [W138A]RXFP3 lost most of this capability, suggesting that the Trp138 residue of RXFP3 forms hydrophobic interactions with the B27Trp residue of relaxin-3. The hydrophobic Trp138 residue and the formerly identified negatively charged Glu141 and Asp145 residues in the highly conserved WxxExxxD motif may thus form a functional surface that is important for interaction with relaxin-3. We hypothesize that the relaxin-3 B-chain C-terminus changes from the original folding-back conformation to an extended conformation during binding with RXFP3, to allow its B27Trp and B26Arg residues to interact with the Trp138 and Glu141 residues of RXFP3, respectively.KeywordsRelaxin-3RXFP3InteractionBindingActivation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700