Electrospinning synthesis of novel lithium-rich 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O 详细信息    查看全文
  • 作者:Lei-Lei Cui ; Xiao-Wei Miao ; Yu-Feng Song ; Wen-Ying Fang…
  • 关键词:Electrospinning ; Cathode ; Nanotube ; Lithium ; rich ; Lithium battery
  • 刊名:Advances in Manufacturing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:4
  • 期:1
  • 页码:79-88
  • 全文大小:1,855 KB
  • 参考文献:1.Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500CrossRef
    2.Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
    3.Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRef
    4.Ozawa Kazunori (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion 69:212–221CrossRef
    5.Ozan T, Hatice AK, Li Y et al (2013) Synthesis and characterization of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J Power Sources 241:522–528CrossRef
    6.Jang YI, Huang B, Wang H et al (1999) LiAl y Co1−y O2(R-3̄m) intercalation cathode for rechargeable lithium batteries. J Electrochem Soc 146:862–868CrossRef
    7.Yuan LX, Wang ZH, Zhang WX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef
    8.Shaju KM, Rao GVS, Chowdari BVR (2003) Performance of layered Li Ni1/3Co1/3Mn1/3O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151CrossRef
    9.Makimura Y, Ohzuku T (2003) Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J Power Sources 119:156–160CrossRef
    10.Thackeray MM, Kang SH, Johnson CS et al (2006) Comments on the structural complexity of lithium-rich Li1+ x M1−x O2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 81:531–1538
    11.Yabuuchi N, Yoshii K, Myung ST et al (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419CrossRef
    12.Ito A, Li DC, Sato Y et al (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li [Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567–573CrossRef
    13.Ye DL, Wang LZ (2014) Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Adv Funct Mater 29:A59–A69
    14.Kang SH, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3·(1−x) LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem Commun 11:748–751CrossRef
    15.Lu Z, Dahn JR (2002) Structure and electrochemistry of layered Li [Cr x Li(1/3−x/3)Mn(2/3−2x/3)]O2. J Electrochem Soc 149:A1454–A1459CrossRef
    16.Kang SH, Kempgens P, Greenbaum S et al (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn 0.5−x Ni0.5−x Co2x , 0 \(\leqslant\)  x \(\leqslant\)  0.5). J Mater Chem 17:2069–2077
    17.Shi SJ, Tu JP, Zhang YJ et al (2013) Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08] O2 cathode material for lithium ion batteries. Electrochim Acta 108:441–448CrossRef
    18.Yuan LX, Wang ZH, Zhang WX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef
    19.Jin SJ, Park KS, Cho MH et al (2006) Effect of composition change of metals in transition metal sites on electrochemical behavior of layered Li [Co1−2x (Li1/3Mn2/3) x (Ni1/2Mn1/2) x ]O2 solid solutions. Solid State Ion 177:105–112CrossRef
    20.Kang SH, Amine K (2005) Layered Li (Li0.2Ni0.15+0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources 146:654–657CrossRef
    21.Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078CrossRef
    22.Sivaprakash S, Majumder SB (2010) Spectroscopic analyses of 0.5Li [Ni0.8Co0.15Zr0.05] O2-0.5 Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries. Solid State Ion 181:730–739CrossRef
    23.Wei YJ, Nikolowski K, Zhan SY et al (2009) Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries. Electrochem Commun 11:2008–2011CrossRef
    24.Amalraj F, Kovacheva D, Talianker M et al (2010) Synthesis of integrated cathode materials xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2(x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130CrossRef
    25.Kim GY, Yi SB, Park YJ et al (2008) Electrochemical behaviors of Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathode series (0 < x < 1) synthesized by sucrose combustion process for high capacity lithium ion batteries. Mater Res Bull 43:3543–3552CrossRef
    26.Shi SJ, Tu JP, Tang YY et al (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23CrossRef
    27.West WC, Soler J, Ratnakumar BV (2012) Preparation of high quality layered-layered composite Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling–annealing process. J Power Sources 204:200–204CrossRef
    28.Peng QW, Tang ZY, Zhang LQ et al (2009) Synthesis of layered Li1.2+x [Ni0.25Mn0.75]0.8−x O2 materials (0 \(\leqslant\)  x \(\leqslant\)  4/55) via a new simple microwave heating method and their electrochemical properties. Mater Res Bull 44:2147–2151CrossRef
    29.Miao XW, Yan Y, Wang CG et al (2014) Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1−x) LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J Power Sources 247:219–227CrossRef
    30.Hosono E, Wang YG, Kida N et al (2010) Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. Appl Mater Interfaces 2:212CrossRef
    31.Mizuno Y, Hosono E, Saito T et al (2012) Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power Li-ion batteries. J Phys Chem C 116:10774–10780CrossRef
    32.Eiji H, Tatsuya S, Junichi H et al (2013) Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning. Cryst Eng Comm 15:2592–2597CrossRef
    33.Shi SJ, Tu JP, Zhang YD et al (2013) Morphology and electrochemical performance of Li [Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources. Electrochim Acta 109:828–834CrossRef
    34.Hwang B, Santhanam R, Chen C (2003) Effect of synthesis conditions on electrochemical properties of LiNi1−y Co y O2 cathode for lithium rechargeable batteries. J Power Sources 114:244CrossRef
    35.Alcantara R, Lavela P, Tirado J et al (1998) Changes in structure and cathode performance with composition and preparation temperature of lithium cobalt nickel oxide. J Electrochem Soc 145:730CrossRef
    36.Chang Z, Chen Z, Wu F et al (2008) Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method. Electrochim Acta 53:5927CrossRef
    37.Min JW, Yim CJ, Im WB (2014) Preparation and electrochemical characterization of flower-like Li1.2Ni0.17Co0.17Mn0.5O2 microstructure cathode by electrospinning. Ceram Int 40:2029CrossRef
    38.Min JW, Kalathil AK, Yim CJ et al (2014) Morphological effects on the electrochemical performance of lithium-rich layered oxide cathodes, prepared by electrospinning technique, for lithium-ion battery applications. Mater Charact 92:118CrossRef
    39.Johnson CS, Li N, Lefief C et al (2008) Characterization and electrochemistry of lithium battery electrodes: x Li2MnO3·(1−x) LiMn0. 333Ni0. 333Co0. 333O2 (0 \(\leqslant\)  x \(\leqslant\)  0.7). Chem Mater 20:6095CrossRef
    40.Min JW, Yim CJ, Im WB (2013) Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS Appl Mater Interfaces 5:7765–7769CrossRef
  • 作者单位:Lei-Lei Cui (1)
    Xiao-Wei Miao (1)
    Yu-Feng Song (1)
    Wen-Ying Fang (1)
    Hong-Bin Zhao (1) (3)
    Jian-Hui Fang (1) (2)

    1. Department of Chemistry, Shanghai University, Shanghai, 200444, People’s Republic of China
    3. Department of Chemical Engineering, University of Waterloo, Waterloo, N2L3G1, Canada
    2. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, 200072, People’s Republic of China
  • 刊物主题:Manufacturing, Machines, Tools; Control, Robotics, Mechatronics; Nanotechnology and Microengineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2195-3597
文摘
In this study, a lithium-rich layered 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 nanotube cathode synthesized by novel electrospinning is reported, and the effects of temperature on the electrochemical performance and morphologies are investigated. The crystal structure is characterized by X-ray diffraction patterns, and refined by two sets of diffraction data (R-3m and C2/m). Refined crystal structure is 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite. The inductively coupled plasma optical emission spectrometer and thermogravimetric and differential scanning calorimetry analysis measurement supply reference to optimize the calcination temperature and heat-treatment time. The morphology is characterized by scanning and high-resolution transmission electron microscope techniques, and the micro-nanostructured hollow tubes of Li-rich 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite with outer diameter of 200–400 nm and the wall thickness of 50–80 nm are synthesized successfully. The electrochemical evaluation shows that 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 sintered at 800 °C for 8 h delivers the highest capacity of the first discharge capacity of 267.7 mAh/g between 2.5 V and 4.8 V at 0.1C and remains 183.3 mAh/g after 50 cycles. The electrospinning method with heat-treatment to get micro-nanostructured lithium-rich cathode shows promising application in lithium-ion batteries with stable electrochemical performance and higher C-rate performance for its shorter Li ions transfer channels and stable designed structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700