Total least L1- and L2-norm estimations of a coordinate transformation model with a structured parameter matrix
详细信息    查看全文
  • 作者:Yanmin Jin ; Xiaohua Tong ; Lingyun Li ; Songlin Zhang…
  • 关键词:total least squares ; L1 ; norm estimation ; L2 ; norm estimation ; coordinate transformation
  • 刊名:Studia Geophysica et Geodaetica
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:59
  • 期:3
  • 页码:345-365
  • 全文大小:590 KB
  • 参考文献:Akyilmaz O., 2007. Total least squares solution of coordinate transformation. Surv. Rev., 39, 68鈥?0.View Article
    Amemiya T., 1982. Two stage least absolute deviation estimators. Econometrica, 50, 689鈥?11.View Article
    Amiri-Simkooei A.R., 2003. Formulation of L1 norm minimization in Gauss-Markov models. J. Surv. Eng., 129, 37鈥?3.View Article
    Amiri-Simkooei A.R., 2013. Application of least squares variance component estimation to errors-in-variables models. J. Geodesy, 87, 935鈥?44.View Article
    Bassett Jr. G. and Koenker R., 1978. Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc., 73, 618鈥?22.View Article
    Beck A. and Ben-Tal A., 2005. A global solution for the structured total least squares problem with block circulant matrices. SIAM J. Matrix Anal. Appl., 27, 238鈥?55.View Article
    Bloomfield P. and Steiger W.L., 1983. Least Absolute Deviations: Theory, Applications, and Algorithms. Birkh盲user, Boston, Mass, USA.
    Branham R. L., Jr., 1986. Error estimates with L1 solutions. Celestial mechanics, 39, 239鈥?47.View Article
    Bur拧a M., 1962. The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the earth, and the planes of the initial astronomic and geodetic meridians from observations of artificial earth satellites. Stud. Geophys. Geod., 6, 209鈥?14 (in Russian).View Article
    Farebrother R.W., 2013. L1-norm and L 鈭?/sub> -Norm Estimation: An Introduction to the Least Absolute Residuals, the Minimax Absolute Residual and Related Fitting Procedures. Springer, Berlin, Heidelberg.View Article
    Fang X., 2014a. A structured and constrained Total Least-Squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1鈥?6.View Article
    Fang X., 2014b. A total least squares solution for geodetic datum transformations. Acta Geod. Geophys., 49, 189鈥?07.View Article
    Felus Y.A., 2006. On linear transformations of spatial data using the structured total least norm principle. Cart. Geogr. Inf. Sci., 33, 195鈥?05.View Article
    Felus Y.A. and Schaffrin B., 2005. Performing similarity transformations using the error-invariables model. ASPRS 2005 Annual Conference, Baltimore, Maryland (ftp://鈥媐tp.鈥媏cn.鈥媝urdue.鈥媏du/鈥媕shan/鈥媝roceedings/鈥媋sprs2005/鈥婩iles/鈥?038.鈥媝df ).
    Felus Y.A., 2007. On the positional enhancement of digital cadastral maps. Surv. Rev., 39, 268鈥?81.View Article
    Felus Y.A. and Burtch R.C., 2009. On symmetrical three-dimensional datum conversion. GPS Solut., 13, 65鈥?4.View Article
    Grafarend E.W. and Awange J.L., 2003. Nonlinear analysis of the three-dimensional datum transformation conformal group C7 (3). J. Geodesy, 77, 66鈥?6.View Article
    Greenfeld S.J., 1997. Least squares weighted coordinate transformation formulas and their applications. J. Surv. Eng., 123, 147鈥?61.View Article
    Gruen A.W., 1985. Adaptive least squares correlation: a powerful image matching technique. S. Afr. J. Photogramm. Remote Sens. Cartogr., 14, 175鈥?87.
    Janicka J., 2011. Transformation of coordinates with robust M-estimation and modified hausbrandt correction. In: ICEE-2011 鈥?International Conference on Environmental Engineering. Vilnius Gediminas Technical University Press Technika, Vilnius, Lithuania, 1330鈥?333, ISBN: 978-9955-28-831-2 CD (http://鈥媗eidykla.鈥媣gtu.鈥媗t/鈥媍onferences/鈥婨nviro2011/鈥婣rticles/鈥?/鈥?330_鈥?333_鈥婮anicka.鈥媝df ).
    Lemmerling P., Van Huffel S. and De Moor B., 2002. The structured total least-squares approach for non-linearly structured matrices. Numer. Linear Algebr. Appl., 9, 321鈥?32.View Article
    Li B.F., Shen Y.Z. and Li W.X., 2012. The seamless model for three-dimensional datum transformation. Sci. China-Earth Sci., 55, 2099鈥?108.View Article
    Mahboub V. and Sharifi M.A., 2013. On weighted total least-squares with linear and quadratic constraints. J. Geodesy, 87, 279鈥?86.View Article
    Markovsky I. and Van Huffel. S., 2006. On weighted structured total least squares. In: Lirkov I., Margenov S. and Wasniewski J. (Eds.), Large-Scale Scientific Computing. Lecture Notes in Computer Scien 3743, Springer-Verlag, Berlin, Heidelberg, Germany, 695鈥?02.View Article
    Marshall J. and Bethel J., 1996. Basic concepts of L1 norm minimization for surveying applications. J. Surv. Eng., 122, 168鈥?79.View Article
    Mikhail E.M. and Ackermann F.E., 1976. Observations and Least Squares. IEP-A Dun Donnelley Publisher, New York.
    Peng J.H., 2005. The asymptotic variance-covariance matrix, Baarda test and the reliability of L1-norm estimates. J. Geodesy, 78, 668鈥?82.View Article
    Rao C.R. and Toutenburg H., 1999. Linear Models: Least Squares and Alternatives. 2nd Edition. Springer, New York.
    Rapp R., 1993. Geometric Geodesy Part II. The Ohio State University, Ohio.
    Rosen J.B., Park H. and Glick J., 1996. Total least norm formulation and solution for structured problems. SIAM J. Matrix Anal. Appl., 17, 110鈥?26.View Article
    Rosen J.B., Park H. and Glick J., 1999. Structured total least norm for nonlinear problems. SIAM J. Matrix Anal. Appl., 20, 14鈥?0.View Article
    Schaffrin B. and Felus Y.A., 2008. On the multivariate total least-squares approach to empirical coordinate transformation. Three algorithms. J. Geodesy, 82, 373鈥?83.View Article
    Tong X.H., Jin Y.M. and Li L.Y., 2011a. An improved weighted total least squares method with applications in linear fitting and coordinate transformation. J. Surv. Eng., 137, 120鈥?28.View Article
    Tong X.H., Liang D., Xu G.S and Zhang S.L., 2011b. Positional accuracy improvement: a comparative study in Shanghai, China. Int. J. Geogr. Inf. Sci., 25, 1147鈥?171.View Article
    Weinstein D.M., 1998. The Analytic 3-D Transform for the Least-Squared Fit of Three Pairs of Corresponding Points. School of Computing Technical Report, No. UUCS-98-005, University of Utah, Salt Lake City, UT.
    Wolf H., 1963. Geometric connection and re-orientation of three-dimensional triangulation nets. Bulletin Geodesique, 68, 165鈥?69.View Article
    Xu P.L., 2005. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J. Geodesy, 79, 146鈥?59.View Article
    Yang Y.X., 1999. Robust estimation of geodetic datum transformation. J. Geodesy, 73, 268鈥?74.View Article
    Zhang S.L., Tong X.H. and Zhang K., 2013. A solution to EIV model with inequality constraints and its geodetic applications. J. Geodesy, 87, 23鈥?8.View Article
    Zitova B. and Flusser J., 2003. Image registration methods: a survey. Image Vis. Comput., 21, 997鈥?000.View Article
  • 作者单位:Yanmin Jin (1)
    Xiaohua Tong (1)
    Lingyun Li (1)
    Songlin Zhang (1)
    Shijie Liu (1)

    1. College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai, 200092, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Structural Geology
    Meteorology and Climatology
  • 出版者:Springer Netherlands
  • ISSN:1573-1626
文摘
Total least L1- and L2-norm estimations of a symmetrical coordinate transformation model with a structured parameter matrix are proposed, with the aim to account for the relationships between the transformation parameters. In the model, the errors in the coordinates of the measured points in both the source and target coordinate systems in the transformation model are taken into account. The solution of the proposed symmetrical coordinate transformation model is derived by the use of the total least L1- and L2-norm estimations. In addition, the variance-covariance matrices of the estimated parameters and the adjusted coordinates of the points are further derived in the two proposed methods. A numerical experiment in coordinate transformation is conducted to test the proposed methods. The results show that the proposed total least L2-norm estimation method is suitable for resolving the transformation model when the coordinates of the points in both the source and target systems are contaminated only by random errors. However, in the case of gross errors in the coordinates of the points, the proposed total least L1-norm estimation method performs better than the total least L2-norm estimation, resulting in higher precision of the estimated parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700