Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast
详细信息    查看全文
  • 作者:Dao-Qiong Zheng (1)
    Jie Chen (1)
    Ke Zhang (1)
    Ke-Hui Gao (1)
    Ou Li (1)
    Pin-Mei Wang (1)
    Xiao-Yang Zhang (2)
    Feng-Guang Du (2)
    Pei-Yong Sun (2)
    Ai-Min Qu (2)
    Shuang Wu (2)
    Xue-Chang Wu (1)
  • 关键词:Whole ; genome shuffling ; Yeast ; Genomic structural variation ; Ethanol fermentation ; Stress tolerance
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:98
  • 期:7
  • 页码:3059-3070
  • 全文大小:1,355 KB
  • 参考文献:1. Akache B, Wu K, Turcotte B (2001) Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 29:2181鈥?190 CrossRef
    2. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a / Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258鈥?270 CrossRef
    3. Bajwa PK, Pinel D, Martin VJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast / Pichia stipitis by genome shuffling. J Microbiol Methods 81:179鈥?86 CrossRef
    4. Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H (2013) Transcriptional profiling of / Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 103:1鈥?5 CrossRef
    5. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of / Saccharomyces cerevisiae. PLoS Genet 7:e1001287 ournal.pgen.1001287" target="_blank" title="It opens in new window">CrossRef
    6. Brown NA, de Castro PA, Castro Pimentel Figueiredo B, Savoldi M, Buckeridge MS, Lopes ML, Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH (2013) Transcriptional profiling of Brazilian / Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res 13:277鈥?90 CrossRef
    7. Chang SL, Lai HY, Tung SY, Leu JY (2013) Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 9:e1003232 ournal.pgen.1003232" target="_blank" title="It opens in new window">CrossRef
    8. Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in / Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst Eng 32:681鈥?88 CrossRef
    9. Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR, Fisk DG, Issel-Tarver L, Schroeder M, Sherlock G (2002) / Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res 30:69鈥?2
    10. Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469鈥?86 CrossRef
    11. Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181鈥?92 CrossRef
    12. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241 CrossRef
    13. Gong JX, Zheng HJ, Wu ZJ, Chen T, Zhao XM (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996鈥?005 CrossRef
    14. Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by / Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33:469鈥?74 CrossRef
    15. Graves T, Narendranath NV, Dawson K, Power R (2007) Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by / Saccharomyces cerevisiae in corn mash. Appl Microbiol Biotechnol 73:1190鈥?196 CrossRef
    16. Guan N, Liu L, Shin H-D, Chen RR, Zhang J, Li J, Du G, Shi Z, Chen J (2013) Systems-level understanding how / Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application. J Biotechnol 167:56鈥?3 CrossRef
    17. Gueldener U, Heinisch J, Koehler G, Voss D, Hegemann J (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23鈥揺23 CrossRef
    18. Herrero E, Ros J, Bell铆 G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217鈥?235 CrossRef
    19. Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2006) Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of / Saccharomyces cerevisiae with DNA microarray. Appl Microbiol Biotechnol 70:346鈥?57 CrossRef
    20. Kim NR, Yang J, Kwon H, An J, Choi W, Kim W (2013) Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in / Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:8227鈥?238 CrossRef
    21. Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P (2009) Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresour Technol 100:4176鈥?182 CrossRef
    22. Lewis JA, Elkon IM, McGee MA, Higbee AJ, Gasch AP (2010) Exploiting natural variation in / Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186:1197鈥?205 CrossRef
    23. Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966鈥?967 CrossRef
    24. Lucena BT, Silva-Filho EA, Coimbra MR, Morais JO, Sim玫es DA, Morais MA Jr (2007) Chromosome instability in industrial strains of / Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet Mol Res 6:1072鈥?084
    25. Lv XA, Jin YY, Li YD, Zhang H, Liang XL (2013) Genome shuffling of / Streptomyces viridochromogenes for improved production of avilamycin. Appl Microbiol Biotechnol 97:641鈥?48 CrossRef
    26. Mahmud SA, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H (2010) Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in / Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 113:526鈥?28 CrossRef
    27. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in / Clostridium diolis DSM 15410 for improved 1, 3-propanediol production. Appl Environ Microbiol 75:7610鈥?616 CrossRef
    28. Palma M, Madeira SC, Mendes-Ferreira A, S谩-Correia I (2013) Impact of assimilable nitrogen availability in glucose uptake kinetics in / Saccharomyces cerevisiae during alcoholic fermentation. Microb Cell Fact 11:99 CrossRef
    29. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayr茅 S (2002) Genome shuffling of / Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707鈥?12 CrossRef
    30. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R (2010) Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321鈥?25 CrossRef
    31. Pinel D, D鈥橝oust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJ (2011) / Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77:4736鈥?743 CrossRef
    32. Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, Johnston LH (2000) The Skn7 response regulator of / Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11:2335鈥?347 CrossRef
    33. Rossouw D, Olivares-Hernandes R, Nielsen J, Bauer FF (2009) Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Appl Environ Microbiol 75:6600鈥?612 CrossRef
    34. Rossouw D, Jacobson D, Bauer FF (2012) Transcriptional regulation and the diversification of metabolism in wine yeast strains. Genetics 190:251鈥?61 CrossRef
    35. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of / Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139鈥?47 CrossRef
    36. Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271鈥?278 CrossRef
    37. Tao XL, Zheng DQ, Liu TZ, Wang PM, Zhao WP, Zhu MY, Jiang XH, Zhao YH, Wu XC (2012) A novel strategy to construct yeast / Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 7:e31235 ournal.pone.0031235" target="_blank" title="It opens in new window">CrossRef
    38. Thomas K, Ingledew W (1992) Production of 21 % ( / v/ / v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J Ind Microbiol 10:61鈥?8 CrossRef
    39. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916鈥?24 CrossRef
    40. Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP, Dunham MJ, Amon A (2010) Identification of aneuploidy-tolerating mutations. Cell 143:71鈥?3 CrossRef
    41. Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG, Min H, Jiang XH, Wu XC (2012) The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial / Saccharomyces cerevisiae. Bioresour Technol 108:203鈥?10 CrossRef
    42. Wood JS (1982) Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate as a rapid mapping method in / Saccharomyces cerevisiae. Mol Cell Biol 2:1080鈥?087
    43. Wu CY, Steffen J, Eide DJ (2009) Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast. PLoS One 4:e7061 ournal.pone.0007061" target="_blank" title="It opens in new window">CrossRef
    44. Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W (2011) Construction of / Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776鈥?787 CrossRef
    45. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in / Saccharomyces cerevisiae. FEMS Yeast Res 9:32鈥?4 CrossRef
    46. Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5:1鈥?1 CrossRef
    47. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayr茅 SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644鈥?46 CrossRef
    48. Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH (2011) Screening and construction of / Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020鈥?027 CrossRef
    49. Zheng DQ, Wang PM, Chen J, Zhang K, Liu TZ, Wu XC, Li YD, Zhao YH (2012a) Genome sequencing and genetic breeding of a bioethanol / Saccharomyces cerevisiae strain YJS329. BMC Genomics 13:479 CrossRef
    50. Zheng P, Zhang KK, Yan Q, Xu Y, Sun ZH (2012b) Enhanced succinic acid production by / Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 40:1鈥?0
    51. Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97:2067鈥?076 CrossRef
  • 作者单位:Dao-Qiong Zheng (1)
    Jie Chen (1)
    Ke Zhang (1)
    Ke-Hui Gao (1)
    Ou Li (1)
    Pin-Mei Wang (1)
    Xiao-Yang Zhang (2)
    Feng-Guang Du (2)
    Pei-Yong Sun (2)
    Ai-Min Qu (2)
    Shuang Wu (2)
    Xue-Chang Wu (1)

    1. Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
    2. State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd), Nanyang, 473000, Henan Province, China
  • ISSN:1432-0614
文摘
Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700