Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study
详细信息    查看全文
  • 作者:Xiaodan Yan (1) (3) (4)
    Jiaxing Zhang (1) (2)
    Qiyong Gong (5)
    Xuchu Weng (1)
  • 刊名:BMC Neuroscience
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:865KB
  • 参考文献:1. West JB, Readhead A: Working at high altitude: medical problems, misconceptions, and solutions. / Observatory 2004,124(1178):1鈥?3.
    2. Wu T, Kayser B: High Altitude Adaptation in Tibetans. / High Alt Med Biol 2006,7(3):193鈥?08. ham.2006.7.193">CrossRef
    3. Hochachka PW, Clark CM, Brown WD, Stanley C, Stone CK, Nickles RJ, Zhu GG, Allen PS, Holden JE: The brain at high altitude: hypometabolism as a defense against chronic hypoxia? / J Cereb Blood Flow Metab 1994,14(4):671鈥?79. CrossRef
    4. Hochachka PW, Clark CM, Matheson GO, Brown WD, Stone CK, Nickles RJ, Holden JE: Effects on regional brain metabolism of high-altitude hypoxia: a study of six US marines. / Am J Physiol Regul Integr Comp Physiol 1999,277(1):R314鈥?19.
    5. Rostrup E, Larsson HBW, Born AP, Knudsen GM, Paulson OB: Changes in BOLD and ADC weighted imaging in acute hypoxia during sea-level and altitude adapted states. / Neuroimage 2005,28(4):947鈥?55. CrossRef
    6. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, / et al.: Genetic evidence for high-altitude adaptation in Tibet. / Science 2010,329(5987):72鈥?5. CrossRef
    7. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, / et al.: Sequencing of 50 human exomes reveals adaptation to high altitude. / Science 2010,329(5987):75鈥?8. CrossRef
    8. Yan X, Zhang J, Shi J, Gong Q, Weng X: Cerebral and functional adaptation with chronic hypoxia exposure: A multi-modal MRI study. / Brain Research 2010, 1348:21鈥?9. CrossRef
    9. Yan X, Zhang J, Gong Q, Weng X: Appetite at high altitude: an fMRI study on the impact of prolonged high-altitude residence on gustatory neural processing. / Exp Brain Res 2011,209(4):495鈥?99. CrossRef
    10. Yan X, Zhang J, Gong Q, Weng X: Prolonged high-altitude residence impacts verbal working memory: an fMRI study. / Exp Brain Res 2011,208(3):437鈥?45. CrossRef
    11. Yan X, Zhang J, Gong Q, Weng X: Adaptive influence of long term high altitude residence on spatial working memory: an fMRI study. / Brain & Cognition 2011, in press.
    12. Logothetis NK, Pfeuffer J: On the nature of the BOLD fMRI contrast mechanism. / Magn Reson Imaging 2004,22(10):1517鈥?531. CrossRef
    13. Attwell D, Iadecola C: The neural basis of functional brain imaging signals. / Trends Neurosci 2002,25(12):621鈥?25. CrossRef
    14. Bright MG, Bulte DP, Jezzard P, Duyn JH: Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI. / Neuroimage 2009,48(1):166鈥?75. CrossRef
    15. Thomason ME, Burrows BE, Gabrieli JDE, Glover GH: Breath holding reveals differences in fMRI BOLD signal in children and adults. / Neuroimage 2005,25(3):824鈥?37. CrossRef
    16. Reich T, Rusinek H: Cerebral cortical and white matter reactivity to carbon dioxide. / Stroke 1989,20(4):453. CrossRef
    17. Kastrup A, Dichgans J, Niemeier M, Schabet M: Changes of cerebrovascular CO2 reactivity during normal aging. / Stroke 1998,29(7):1311. CrossRef
    18. Biswal BB, Kylen JV, Hyde JS: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. / NMR Biomed 1997,10(45):165鈥?70. CrossRef
    19. Hackett PH, Rennie D, Levine HD: The incidence, importance, and prophylaxis of acute mountain sickness. / Lancet 1976,308(7996):1149鈥?155. CrossRef
    20. Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME: Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. / Stroke 1998,29(12):2641. CrossRef
    21. Topolovec JC, Gati JS, Menon RS, Shoemaker JK, Cechetto DF: Human cardiovascular and gustatory brainstem sites observed by functional magnetic resonance imaging. / J Comp Neurol 2004,471(4):446鈥?61. CrossRef
    22. Kastrup A, Kruger G, Neumann-Haefelin T, Moseley ME: Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO2 and breath holding. / Magnetic Resonance Imaging 2001,19(1):13鈥?0. CrossRef
    23. Thomason ME, Glover GH: Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. / Neuroimage 2008,39(1):206鈥?14. CrossRef
    24. Frisancho AR: Functional adaptation to high altitude hypoxia. / Science 1975,187(4174):313鈥?19. CrossRef
    25. Krogh A, Lindhard J: The regulation of respiration and circulation during the initial stages of muscular work. / The Journal of physiology 1913,47(1鈥?):112.
    26. Aleksandrov VG, Aleksandrova NP, Bagaev VA: Identification of a respiratory related area in the rat insular cortex. / Canadian Journal of Physiology and Pharmacology 2000,78(7):582. CrossRef
    27. McKay LC, Adams L, Frackowiak RSJ, Corfield DR: A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging. / Neuroimage 2008,40(4):1824鈥?832. CrossRef
    28. Gandevia SC, Rothwell JC: Activation of the human diaphragm from the motor cortex. / The Journal of physiology 1987,384(1):109.
    29. Turner EA: Cerebral control of respiration. / Brain 1954,77(3):448. CrossRef
    30. Akopyan NS, Baklavadzhyan OG, Sarkisyan VV: The effects of the mediodorsal nucleus of the thalamus on respiratory neurons of the medulla oblongata and respiration in rats in conditions of hypoxia. / Neuroscience and Behavioral Physiology 2000,30(4):449鈥?53. CrossRef
    31. McKay LC, Evans KC, Frackowiak RSJ, Corfield DR: Neural correlates of voluntary breathing in humans. / J Appl Physiol 2003,95(3):1170.
    32. Revelette WR, Davenport PW: Effects of timing of inspiratory occlusion on cerebral evoked potentials in humans. / Journal of Applied Physiology 1990,68(1):282鈥?88.
    33. Durston S, Thomas KM, Yang Y, Ulug AM, Zimmerman RD, Casey BJ: A neural basis for the development of inhibitory control. / Developmental Science 2002,5(4):F9-F16. CrossRef
    34. Fransson P, Marrelec G: The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. / Neuroimage 2008,42(3):1178鈥?184. CrossRef
    35. Greicius MD, Krasnow B, Reiss AL, Menon V: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. / PNAS 2003,100(1):253. CrossRef
    36. Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E: Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. / American Journal of Psychiatry 2005,162(6):1067. CrossRef
    37. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD: Anterior cingulate cortex, error detection, and the online monitoring of performance. / Science 1998,280(5364):747. CrossRef
    38. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD: Conflict monitoring and cognitive control. / Psychological review 2001,108(3):624. CrossRef
    39. MacDonald AW, Cohen JD, Stenger VA, Carter CS: Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. / Science 2000,288(5472):1835鈥?838. CrossRef
    40. van Veen V, Carter CS: Conflict and cognitive control in the brain. / Current Directions in Psychological Science 2006,15(5):237鈥?40. CrossRef
    41. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC: A common network of functional areas for attention and eye movements. / Neuron 1998,21(4):761鈥?73. CrossRef
    42. Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J: Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. / Biol Psychiatry 1999,45(12):1542鈥?552. CrossRef
    43. Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP: Mapping the functional connectivity of anterior cingulate cortex. / Neuroimage 2007,37(2):579鈥?88. CrossRef
    44. von Leupoldt A, Sommer T, Kegat S, Eippert F, Baumann HJ, Klose H, Dahme B, Buchel C: Down regulation of insular cortex responses to dyspnea and pain in asthma. / Am J Respir Crit Care Med 2009,180(3):232鈥?38. CrossRef
    45. Ackermann H, Riecker A: The contribution (s) of the insula to speech production: a review of the clinical and functional imaging literature. / Brain Structure and Function 2010, 214:419鈥?33. CrossRef
    46. Kaada BR, Pribram KH, Epstein JA: Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus: a preliminary report. / Journal of Neurophysiology 1949,12(5):347.
    47. Showers MJC, Lauer EW: Somatovisceral motor patterns in the insula. / The Journal of comparative neurology 1961,117(1):107鈥?15. CrossRef
    48. Hochachka PW, Clark CM, Monge C, Stanley C, Brown WD, Stone CK, Nickles RJ, Holden JE: Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. / J Appl Physiol 1996,81(3):1355鈥?361.
    49. Jansen GFA, Krins A, Basnyat B, Bosch A, Odoom JA: Cerebral Autoregulation in Subjects Adapted and Not Adapted to High Altitude. / Stroke 2000,31(10):2314鈥?318. CrossRef
    50. Jansen GFA, Krins A, Basnyat B, Odoom JA, Ince C: Role of the altitude level on cerebral autoregulation in residents at high altitude. / J Appl Physiol 2007,103(2):518鈥?23. CrossRef
    51. Neubauer JA: Physiological and Genomic Consequences of Intermittent Hypoxia: Invited Review: Physiological and pathophysiological responses to intermittent hypoxia. / J Appl Physiol 2001,90(4):1593鈥?599.
    52. Goense JBM, Logothetis NK: Neurophysiology of the BOLD fMRI Signal in Awake Monkeys. / Current Biology 2008,18(9):631鈥?40. CrossRef
    53. Lim KO, Helpern JA: Neuropsychiatric applications of DTI--a review. / NMR Biomed 2002,15(78):587鈥?93. CrossRef
    54. Marchal G, Bosmans H, Van Fraeyenhoven L, Wilms G, Van Hecke P, Plets C, Baert AL: Intracranial vascular lesions: optimization and clinical evaluation of three-dimensional time-of-flight MR angiography. / Radiology 1990,175(2):443.
    55. Willinek WA, Born M, Simon B, Tschampa HJ, Krautmacher C, Gieseke J, Urbach H, Textor HJ, Schild HH: Time-of-Flight MR Angiography: Comparison of 3.0-T Imaging and 1.5-T Imaging--Initial Experience1. / Radiology 2003,229(3):913. CrossRef
    56. Williams DS, Detre JA, Leigh JS, Koretsky AP: Magnetic resonance imaging of perfusion using spin inversion of arterial water. / PNAS 1992,89(1):212鈥?16. CrossRef
    57. Detre JA, Leigh JS, Williams DS, Koretsky AP: Perfusion imaging. / Magn Reson Med 1992,23(1):37鈥?5. CrossRef
    58. Cox RW: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. / Computers and Biomedical Research 1996,29(3):162鈥?73. CrossRef
    59. Talairach J, Tournoux P: / Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. New York, USA: Thieme; 1988.
  • 作者单位:Xiaodan Yan (1) (3) (4)
    Jiaxing Zhang (1) (2)
    Qiyong Gong (5)
    Xuchu Weng (1)

    1. Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
    3. Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY, USA
    4. Center for Neural Science, New York University, New York, NY, USA
    2. Department of Physiology, Medical College of Xiamen University, Xiamen, China
    5. Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China
文摘
Background The impact of long term residence on high altitude (HA) on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA) residents as compared to native sea level (SL) residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus) and the cerebellar tonsil. Inspiratory reserve volume (IRV), which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700