Identification of lysine K18 acetylation on histone H3 peptide using gold nanoparticles' aggregation behaviour
详细信息    查看全文
  • 作者:Ning Li ; Laura Sutarlie ; Qiao Jing Lew ; Sheng-Hao Chao ; Xiaodi Su
  • 关键词:Peptide ; functionalized gold nanoparticles ; Colorimetric biosensing ; Histone modification ; Lysine acetylation
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:48
  • 期:4
  • 页码:1023-1031
  • 全文大小:1,239 KB
  • 参考文献:Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111(3):381–392CrossRef PubMed
    Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400CrossRef PubMed
    Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118PubMed PubMedCentral
    Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to daphnia magna. Environ Sci NANO 1:260–270CrossRef
    Britton LM, Gonzales-Cope M, Zee BM, Barcia BA (2011) Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 8(5):631–643CrossRef PubMed PubMedCentral
    Cerbo VD, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A, Richter FM, Bannister AJ, Mittler G, Michaelis J, Khochbin S, Feil R, Schuebeler D, Owen-Hughes T, Daujat S, Schneider R (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3:e01632CrossRef PubMed PubMedCentral
    Chakrabarti R, Klibanov AM (2003) Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J Am Chem Soc 125(41):12531–12540CrossRef PubMed
    Chandrawati R, Stevens MM (2014) Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation Factor XIII activity. Chem Commun 50:5431–5434CrossRef
    Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100CrossRef PubMed
    Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quantity. Nat Struct Mol Biol 18(1):91–93CrossRef PubMed PubMedCentral
    Guan K-L, Yu W, Lin Y, Xiong Y, Zhao S (2010) Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nat Protoc 5(9):1583–1595CrossRef PubMed
    Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R (2010) Bioorthogonal chemistry amplifies nanoparticles binding and enhances the sensitivity of cell detection. Nat Nanotechnol 5:660–665CrossRef PubMed PubMedCentral
    He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459CrossRef
    Hyun S, Lee KH, Han A, Yu J (2011) An RNA aptamer that selectively recognizes symmetric demethylation of arginine 8 in the histone H3N-terminal peptide. Nucleic Acid Ther 21(3):157–163CrossRef PubMed
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRef PubMed
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692CrossRef PubMed PubMedCentral
    Karczmarski J, Rubel T, Paziewska A, Mikula M, Bujko M, Kober P, Dadlez M, Ostrowski J (2014) Histone H3 lysine 27 acetylation is altered in colon cancer. Clin Proteomics 11:24CrossRef PubMed PubMedCentral
    Klein JS, Gnanapragasam PNP, Galimidi RP, Foglesong CP, West AP Jr, Bjorkman PJ (2009) Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci USA 106(18):7385–7390CrossRef PubMed PubMedCentral
    Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3(2):314–320CrossRef PubMed
    Li N, Su X, Lu Y (2015) Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 140:2916–2943CrossRef PubMed
    Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28CrossRef PubMed PubMedCentral
    Lou T, Chen Z, Wang Y, Chen L (2011) Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces 3(5):1568–1573CrossRef PubMed
    Minaker SA, Daze KD, Ma MCF, Hof F (2012) Antibody-free reading of the histone code using a simple chemical sensor array. J Am Chem Soc 134(28):11674–11680CrossRef PubMed
    Oishi J, Asami Y, Mori T, Kang JH, Niidome T, Katayama Y (2008) Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules 9(9):2301–2308CrossRef PubMed
    Qiao Y, Wang R, Yang X, Tang K, Jing N (2015) Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290:2508–2520CrossRef PubMed PubMedCentral
    Ronzoni S, Faretta M, Ballarini M, Pelicci P, Minucci S (2005) New method to detect histone acetylation levels by flow cytometry. Cytometry Part A 66A(1):52–61CrossRef
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRef PubMed PubMedCentral
    Simon MD, Chu F, Racki LR, de la Curz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128(5):1003–1012CrossRef PubMed PubMedCentral
    Smet-Nocca C, Wieruszeski JM, Melnyk L, Benecke A (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16(8):414–423PubMed
    Sutarlie L, Aung KMM, Lim MGL, Lukman S, Cheung E, Su X (2014) Studying protein–DNA complexes using gold nanoparticles by exploiting particle aggregation, refractive index change, and fluorescence quenching and enhancement particles. Plasmonics 9(4):753–763CrossRef
    Swartz JD, Gulka CP, Haselton FR, Wright DW (2011) Development of a histidine-targeted spectrophotometric sensor using Ni(II)NTA-functionalized Au and Ag nanoparticles. Langmuir 27(24):15330–15339CrossRef PubMed
    Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin film of Au@SiO2 particles. J Phys Chem B 105(17):3441–3452CrossRef
    Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun, 3780–3782
    Wang T, Kumru OS, Yi L, Wang YJ, Zhang J, Kim JH, Joshi SB, Middaugh CR, Volkin DB (2013) Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J Pharm Sci 102(8):2520–2537CrossRef PubMed
    Williams BAR, Lin L, Lindsay SM, Chaput JC (2009) Evolution of a histone H4-K16 acetyl-specific DNA aptamer. J Am Chem Soc 131(18):6330–6331CrossRef PubMed PubMedCentral
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRef PubMed
    Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA 107(24):10837–10841CrossRef PubMed PubMedCentral
    Yoshida W, Kezuka A, Abe K, Wakeda H, Nakabayashi K, Hata K, Ikebukuro K (2013) Detection of histone modification by chromatin immunoprecipitation combined zinc finger luciferase-based bioluminescence resonance energy transfer assay. Anal Chem 85(13):6485–6490CrossRef PubMed
  • 作者单位:Ning Li (1)
    Laura Sutarlie (1)
    Qiao Jing Lew (2)
    Sheng-Hao Chao (2) (3)
    Xiaodi Su (1)

    1. Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
    2. Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
    3. Department of Microbiology, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117597, Singapore
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
文摘
Acetylation of histones, the major protein component of eukaryotic chromosomes, contributes to the epigenetic regulation of gene expression and is also involved in cancer development. A recent study revealed the correlation between tumour formation and acetylation level of lysine K18 on histone H3. In this study, we developed two colorimetric in vitro assays using gold nanoparticles (AuNPs) for identification of lysine K18 acetylation on histone H3 peptide. In assay I, citrate ion-capped AuNP without further modification was employed. Simply mixing the K18 peptide with AuNP solution leads to distinct particle aggregation, relative to that by non-acetylated or lysine K14 acetylated control peptides. In assay II, an AuNP–peptide–antibody composite was synthesized and used as both the sensing probe and the transducing element. By mixing the sample peptides with the composite solution followed by PBS screening, different aggregation behaviours were observed between the K18 acetylated target peptide and the control sequences. Both assays are capable of identifying the acetylated peptides, and also differentiating the distinctive acetylation positions that differ merely by a distance of three amino acids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700