Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids
详细信息    查看全文
  • 作者:Weijie Kong ; Lin Cheng ; Xiaodong He ; Zhihua Xu…
  • 关键词:Microfluidic ; Power generator ; Energy harvesting ; Electret ; Vibration
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:18
  • 期:5-6
  • 页码:1299-1307
  • 全文大小:2,263 KB
  • 参考文献:Boisseau S, Despesse G, Ricart T, Defay E, Sylvestre A (2011) Cantilever-based electret energy harvesters. Smart Mater Struct. doi:10.-088/-964-1726/-0/-0/-05013
    Boland JS, Messenger JDM, Lo KW, Tai YC (2005) Arrayed liquid rotor electret power generator systems. In: 18th International conference on micro electro mechanical systems (MEMS), Miami, FL, pp 618-21. doi:10.-109/?memsys.-005.-454005
    Chen D et al (2008) The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc Natl Acad Sci USA 105:16843-6848. doi:10.-073/?pnas.-807916105 View Article
    Cottam BF, Krishnadasan S, de Mello AJ, de Mello JC, Shaffer MSP (2007) Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip 7:167-69. doi:10.-039/?b616068a View Article
    Davis JH, Fox PA (2003) From curiosities to commodities: ionic liquids begin the transition. Chem Commun. doi:10.-039/?b212788a
    Degennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827-63. doi:10.-103/?RevModPhys.-7.-27 View Article
    Fan R et al (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373-378. doi:10.-038/?nbt.-507 View Article
    Fei W, Hansen O (2013) Inorganic electret with enhanced charge stability for energy harvesting. In: 8th IEEE international conference on nano/micro engineered and molecular systems (NEMS), Suzhou, China, pp 207-10. doi:10.-109/?nems.-013.-559716
    Hennequin Y, Pannacci N, de Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P (2009) Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25:7857-861. doi:10.-021/?la9004449 View Article
    Hu XD et al (2011) Ionic liquid based variable focus lenses. Soft Matter 7:5941-943. doi:10.-039/?c1sm05585b View Article
    Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172-80. doi:10.-039/?b513231b View Article
    Jiang H, Weng XA, Li DQ (2011) Microfluidic whole-blood immunoassays. Microfluid Nanofluid 10:941-64. doi:10.-007/?s10404-010-0718-9 View Article
    Kashiwagi K, Okano K, Miyajima T, Sera Y, Tanabe N, Morizawa Y, Suzuki Y (2011) Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting. J Micromech Microeng 21:125016. doi:10.-088/-960-1317/-1/-2/-25016 View Article
    Kong W et al (2014) Ionic liquid based vibrational energy harvester by periodically squeezing the liquid bridge. RSC Adv 4:19356-9361. doi:10.-039/?c4ra00629a View Article
    Krupenkin T, Taylor JA (2011) Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2:448. doi:10.-038/?ncomms1454 View Article
    Lo HW, Tai YC (2008) Parylene-based electret power generators. J Micromech Microeng 18:104006. doi:10.-088/-960-1317/-8/-0/-04006 View Article
    Lu MC, Satyanarayana S, Karnik R, Majumdar A, Wang CC (2006) A mechanical-electrokinetic battery using a nano-porous membrane. J Micromech Microeng 16:667-75. doi:10.-088/-960-1317/-6/-/-01 View Article
    Mansouri A, Bhattacharjee S, Kostiuk L (2012) High-power electrokinetic energy conversion in a glass microchannel array. Lab Chip 12:4033-036. doi:10.-039/?c2lc40525c View Article
    Mollot DJ, Tsamopoulos J, Chen TY, Ashgriz N (1993) Nonlinear dynamics of capillary bridges—experiments. J Fluid Mech 255:411-35. doi:10.-017/?s002211209300253- View Article MathSciNet
    Moon JK, Jeong J, Lee D, Pak HK (2013) Electrical power generation by mechanically modulating electrical double layers. Nat Commun 4:1487. doi:10.-038/?ncomms2485 View Article
    Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792-93. doi:10.-126/?science.-090313 View Article
    Sakane Y, Suzuki Y, Kasagi N (2008) The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J Micromech Microeng 18:104011. doi:10.-088/-960-1317/-8/-0/-04011 View Article
    Tai CH, Tsai YC, Wang CH, Ho TS, Chang CP, Lee GB (2014) An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples. Microfluid Nanofluid 16:501-12. doi:10.-007/?s10404-013-1249-y View Article
    Wang YJ et al (2009) An integrated microfluidic device for large-scale in situ click chemistry screening. Lab Chip 9:2281-285. doi:10.-039/?b907430a View Article
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368-73. doi:10.-038/?nature05058 View Article
    Yang J, Lu FZ, Kostiuk LW, Kwok DY (2003) Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng 13:963-70. doi:10.-088/-960-1317/-3/-/-20 View Article
  • 作者单位:Weijie Kong (1)
    Lin Cheng (1)
    Xiaodong He (1)
    Zhihua Xu (1)
    Xiangyuan Ma (2)
    Yude He (2)
    Liujin Lu (2)
    Xiaoping Zhang (1)
    Youquan Deng (2)

    1. School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
    2. Centre for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, China
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the microscopic conductive liquid bridge between two electrodes, the electrical power is generated. A simple electrical circuit model is developed for theoretical analysis. The experimental and theoretical results imply that the variation magnitude of the top contact area and the surface charge density of the electret are the two critical factors in power generation, and the output power improves drastically with the two factors. Furthermore, this MPG uses the ionic liquid as the liquid media, which can continuously work well in the air under normal conditions and in the wide operating temperature range. By far, the prototype with just single ionic liquid bridge of 15?μL volume and the surface charge density of 0.167?mC/m2 can generate the maximum effective power of 0.221?μW and the energy per cycle of 7.48?nJ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700