Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer
详细信息    查看全文
  • 作者:Danfang Zhang (12) (13)
    Baocun Sun (12) (13) (14) (15)
    Xiulan Zhao (12) (13)
    Yuemei Ma (12)
    Ru Ji (12)
    Qiang Gu (12) (13)
    Xueyi Dong (12)
    Jing Li (12) (13)
    Fang Liu (12)
    Xiaohua Jia (12)
    Xue Leng (12) (14)
    Chong Zhang (12)
    Ran Sun (12)
    Jiadong Chi (12)

    12. Department of Pathology
    ; Tianjin Medical University ; Tianjin ; 300070 ; China
    13. Department of Pathology
    ; General Hospital of Tianjin Medical University ; Tianjin ; 300070 ; China
    14. Department of Pathology
    ; Cancer Hospital of Tianjin Medical University ; Tianjin ; 300060 ; China
    15. Department of Pathology
    ; Tianjin Medical University and General Hospital and Cancer Hospital ; Tianjin ; 300070 ; PR China
  • 关键词:Triple ; negative breast cancer ; Cancer stem cell ; Vasculogenic mimicry ; Angiogenesis ; Sunitinib ; Twist1
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:5,935 KB
  • 参考文献:1. Jemal, A, Siegel, R, Ward, E, Hao, Y, Xu, J, Thun, MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59: pp. 225-249 CrossRef
    2. von Minckwitz, G, Untch, M, Nuesch, E, Loibl, S, Kaufmann, M, Kummel, S, Fasching, PA, Eiermann, W, Blohmer, JU, Costa, SD, Mehta, K, Hilfrich, J, Jackisch, C, Gerber, B, du Bois, A, Huober, J, Hanusch, C, Konecny, G, Fett, W, Stickeler, E, Harbeck, N, M眉ller, V, J眉ni, P (2011) Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 125: pp. 145-156 CrossRef
    3. Baselga, J, Norton, L, Albanell, J, Kim, YM, Mendelsohn, J (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58: pp. 2825-2831
    4. Pal, SK, Childs, BH, Pegram, M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125: pp. 627-636 CrossRef
    5. Lund, MJ, Butler, EN, Bumpers, HL, Okoli, J, Rizzo, M, Hatchett, N, Green, VL, Brawley, OW, Oprea-Ilies, GM, Gabram, SG (2008) High prevalence of triple-negative tumors in an urban cancer center. Cancer 113: pp. 608-615 CrossRef
    6. Yuan, ZY, Wang, SS, Gao, Y, Su, ZY, Luo, WB, Guan, ZZ (2008) [Clinical characteristics and prognosis of triple-negative breast cancer: a report of 305 cases]. Ai Zheng 27: pp. 561-565
    7. Yin, WJ, Lu, JS, Di, GH, Lin, YP, Zhou, LH, Liu, GY, Wu, J, Shen, KW, Han, QX, Shen, ZZ, Shao, ZM (2009) Clinicopathological features of the triple-negative tumors in Chinese breast cancer patients. Breast Cancer Res Treat 115: pp. 325-333 CrossRef
    8. Foulkes, WD, Smith, IE, Reis-Filho, JS (2010) Triple-negative breast cancer. N Engl J Med 363: pp. 1938-1948 CrossRef
    9. Cao, Y, Langer, R (2010) Optimizing the delivery of cancer drugs that block angiogenesis. Sci Transl Med 2: pp. 15ps13 CrossRef
    10. Cao, Y, Zhong, W, Sun, Y (2009) Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Semin Cancer Biol 19: pp. 338-343 CrossRef
    11. Sarmiento, R, D鈥橝ndrea, MR, Cacciamani, F, Salerno, F, Gasparini, G (2009) Antiangiogenic therapies in breast cancer. Curr Opin Investig Drugs 10: pp. 1334-1345
    12. Sandler, A, Gray, R, Perry, MC, Brahmer, J, Schiller, JH, Dowlati, A, Lilenbaum, R, Johnson, DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: pp. 2542-2550 CrossRef
    13. Rini, BI, Halabi, S, Rosenberg, JE, Stadler, WM, Vaena, DA, Archer, L, Atkins, JN, Picus, J, Czaykowski, P, Dutcher, J, Small, EJ (2010) Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol 28: pp. 2137-2143 CrossRef
    14. Cheng, AL, Kang, YK, Chen, Z, Tsao, CJ, Qin, S, Kim, JS, Luo, R, Feng, J, Ye, S, Yang, TS, Xu, J, Sun, Y, Liang, H, Liu, J, Wang, J, Tak, WY, Pan, H, Burock, K, Zou, J, Voliotis, D, Guan, Z (2009) Efficacy and safety of sorafenib in patients in the Asia-pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: pp. 25-34 CrossRef
    15. Miller, K, Wang, M, Gralow, J, Dickler, M, Cobleigh, M, Perez, EA, Shenkier, T, Cella, D, Davidson, NE (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357: pp. 2666-2676 CrossRef
    16. Kerbel, RS (2011) Reappraising antiangiogenic therapy for breast cancer. Breast 20: pp. S56-S60 CrossRef
    17. Hayes, DF (2011) Bevacizumab treatment for solid tumors: boon or bust?. JAMA 305: pp. 506-508 CrossRef
    18. Barrios, CH, Liu, MC, Lee, SC, Vanlemmens, L, Ferrero, JM, Tabei, T, Pivot, X, Iwata, H, Aogi, K, Lugo-Quintana, R, Harbeck, N, Brickman, MJ, Zhang, K, Kern, KA, Martin, M (2010) Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 121: pp. 121-131 CrossRef
    19. Bergers, G, Hanahan, D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8: pp. 592-603 CrossRef
    20. Burstein, HJ, Elias, AD, Rugo, HS, Cobleigh, MA, Wolff, AC, Eisenberg, PD, Lehman, M, Adams, BJ, Bello, CL, DePrimo, SE, Baum, CM, Miller, KD (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26: pp. 1810-1816 CrossRef
    21. Johannsen, M, Florcken, A, Bex, A, Roigas, J, Cosentino, M, Ficarra, V, Kloeters, C, Rief, M, Rogalla, P, Miller, K, Grunwald, V (2009) Can tyrosine kinase inhibitors be discontinued in patients with metastatic renal cell carcinoma and a complete response to treatment? A multicentre, retrospective analysis. Eur Urol 55: pp. 1430-1438 CrossRef
    22. Paez-Ribes, M, Allen, E, Hudock, J, Takeda, T, Okuyama, H, Vinals, F, Inoue, M, Bergers, G, Hanahan, D, Casanovas, O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: pp. 220-231 CrossRef
    23. Maniotis, AJ, Folberg, R, Hess, A, Seftor, EA, Gardner, LM, Pe鈥檈r, J, Trent, JM, Meltzer, PS, Hendrix, MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: pp. 739-752 CrossRef
    24. Sun, BC, Zhang, SW, Zhao, XL, Hao, XS (2003) [Study on vasculogenic mimicry in malignant melanoma]. Zhonghua Bing Li Xue Za Zhi 32: pp. 539-543
    25. Shirakawa, K, Kobayashi, H, Sobajima, J, Hashimoto, D, Shimizu, A, Wakasugi, H (2003) Inflammatory breast cancer: vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res 5: pp. 136-139 CrossRef
    26. Liu, R, Yang, K, Meng, C, Zhang, Z, Xu, Y (2012) Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther 13: pp. 527-533 CrossRef
    27. Wang, JY, Sun, T, Zhao, XL, Zhang, SW, Zhang, DF, Gu, Q, Wang, XH, Zhao, N, Qie, S, Sun, BC (2008) Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biol Ther 7: pp. 758-766 CrossRef
    28. Sun, T, Zhao, N, Zhao, XL, Gu, Q, Zhang, SW, Che, N, Wang, XH, Du, J, Liu, YX, Sun, BC (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51: pp. 545-556 CrossRef
    29. Sun, B, Zhang, D, Zhang, S, Zhang, W, Guo, H, Zhao, X (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249: pp. 188-197 CrossRef
    30. Liu, TJ, Sun, BC, Zhao, XL, Zhao, XM, Sun, T, Gu, Q, Yao, Z, Dong, XY, Zhao, N, Liu, N (2013) CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32: pp. 544-553 CrossRef
    31. Seidel, S, Garvalov, BK, Wirta, V, von Stechow, L, Schanzer, A, Meletis, K, Wolter, M, Sommerlad, D, Henze, AT, Nister, M, Reifenberger, G, Lundeberg, J, Fris茅n, J, Acker, T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133: pp. 983-995 CrossRef
    32. Zhang, S, Zhang, D, Sun, B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254: pp. 157-164 CrossRef
    33. Hendrix, MJ, Seftor, EA, Hess, AR, Seftor, RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3: pp. 411-421 CrossRef
    34. De Laurentiis, M, Cianniello, D, Caputo, R, Stanzione, B, Arpino, G, Cinieri, S, Lorusso, V, De Placido, S (2010) Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 36: pp. S80-S86 CrossRef
    35. Seftor, EA, Meltzer, PS, Kirschmann, DA, Pe鈥檈r, J, Maniotis, AJ, Trent, JM, Folberg, R, Hendrix, MJ (2002) Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis 19: pp. 233-246 CrossRef
    36. Seftor, EA, Meltzer, PS, Schatteman, GC, Gruman, LM, Hess, AR, Kirschmann, DA, Seftor, RE, Hendrix, MJ (2002) Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 44: pp. 17-27 CrossRef
    37. Yao, X, Ping, Y, Liu, Y, Chen, K, Yoshimura, T, Liu, M, Gong, W, Chen, C, Niu, Q, Guo, D, Zhang, X, Wang, JM, Bian, X (2013) Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS One 8: pp. e57188 CrossRef
    38. Lehmann, BD, Bauer, JA, Chen, X, Sanders, ME, Chakravarthy, AB, Shyr, Y, Pietenpol, JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: pp. 2750-2767 CrossRef
    39. Sun, T, Sun, BC, Zhao, XL, Zhao, N, Dong, XY, Che, N, Yao, Z, Ma, YM, Gu, Q, Zong, WK, Liu, ZY (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology 54: pp. 1690-1706 CrossRef
    40. Bear, HD, Tang, G, Rastogi, P, Geyer, CE, Robidoux, A, Atkins, JN, Baez-Diaz, L, Brufsky, AM, Mehta, RS, Fehrenbacher, L, Young, JA, Senecal, FM, Gaur, R, Margolese, RG, Adams, PT, Gross, HM, Costantino, JP, Swain, SM, Mamounas, EP, Wolmark, N (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366: pp. 310-320 CrossRef
    41. Ratner, M (2011) Fearful of Avastin鈥檚 fate, Genentech asks for unusual hearing. Nat Med 17: pp. 233 CrossRef
    42. Sun, B, Zhang, S, Zhang, D, Li, Y, Zhao, X, Luo, Y, Guo, Y (2008) Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res 14: pp. 7050-7059 CrossRef
    43. Sun, B, Zhang, S, Zhang, D, Gu, Y, Zhang, W, Zhao, X (2007) The influence of different microenvironments on melanoma invasiveness and microcirculation patterns: an animal experiment study in the mouse model. J Cancer Res Clin Oncol 133: pp. 979-985 CrossRef
    44. Seftor, RE, Hess, AR, Seftor, EA, Kirschmann, DA, Hardy, KM, Margaryan, NV, Hendrix, MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181: pp. 1115-1125 CrossRef
    45. Conley, SJ, Gheordunescu, E, Kakarala, P, Newman, B, Korkaya, H, Heath, AN, Clouthier, SG, Wicha, MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109: pp. 2784-2789 CrossRef
    46. Soeda, A, Park, M, Lee, D, Mintz, A, Androutsellis-Theotokis, A, McKay, RD, Engh, J, Iwama, T, Kunisada, T, Kassam, AB, Pollack, IF, Park, DM (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28: pp. 3949-3959 CrossRef
    47. Cannito, S, Novo, E, di Bonzo, LV, Busletta, C, Colombatto, S, Parola, M (2010) Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12: pp. 1383-1430 CrossRef
    48. Yang, MH, Hsu, DS, Wang, HW, Wang, HJ, Lan, HY, Yang, WH, Huang, CH, Kao, SY, Tzeng, CH, Tai, SK, Chang, SY, Lee, OK, Wu, KJ (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12: pp. 982-992 CrossRef
    49. Mani, SA, Guo, W, Liao, MJ, Eaton, EN, Ayyanan, A, Zhou, AY, Brooks, M, Reinhard, F, Zhang, CC, Shipitsin, M, Campbell, LL, Polyak, K, Brisken, C, Yang, J, Weinberg, RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: pp. 704-715 CrossRef
    50. Borgna, S, Armellin, M, di Gennaro, A, Maestro, R, Santarosa, M (2012) Mesenchymal traits are selected along with stem features in breast cancer cells grown as mammospheres. Cell Cycle 11: pp. 4242-4251 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Hypoxia induced by antiangiogenic agents is linked to the generation of cancer stem cells (CSCs) and treatment failure through unknown mechanisms. The generation of endothelial cell-independent microcirculation in malignant tumors is defined as tumor cell vasculogenic mimicry (VM). In the present study, we analyzed the effects of an antiangiogenic agent on VM in triple-negative breast cancer (TNBC). Methods Microcirculation patterns were detected in patients with TNBC and non-TNBC. Tientsin Albino 2 (TA2) mice engrafted with mouse TNBC cells and nude mice engrafted with human breast cancer cell lines with TNBC or non-TNBC phenotypes were administered sunitinib and analyzed to determine tumor progression, survival, microcirculation, and oxygen concentration. Further, we evaluated the effects of hypoxia induced with CoCl2 and the expression levels of the transcription factor Twist1, in the presence or absence of a Twist siRNA, on the population of CD133+ cells and VM in TNBC and non-TNBC cells. Results VM was detected in 35.8 and 17.8% of patients with TNBC or with non-TNBC, respectively. The growth of tumors in TNBC and non-TNBC-bearing mice was inhibited by sunitinib. The tumors in TA2 mice engrafted with mouse TNBCs and in mice engrafted a human TNBC cell line (MDA-MB-231) regrew after terminating sunitinib administration. However, this effect was not observed in mice engrafted with a non-TNBC tumor cell line. Tumor metastases in sunitinib-treated TA2 mice was accelerated, and the survival of these mice decreased when sunitinib was withdrawn. VM was the major component of the microcirculation in sunitinib-treated mice with TNBC tumors, and the population of CD133+ cells increased in hypoxic areas. Hypoxia also induced MDA-MB-231 cells to express Twist1, and CD133+ cells present in the MDA-MB-231 cell population induced VM after reoxygenation. Moreover, hypoxia did not induce MDA-MB-231 cells transfected with an sh-Twist1 siRNA cell to form VM and generate CD133+ cells. Conversely, hypoxia induced MCF-7 cells transfected with Twist to form VM and generate CD133+ cells. Conclusions Sunitinib induced hypoxia in TNBCs, and Twist1 expression induced by hypoxia accelerated VM by increasing population of CD133+ cells. VM was responsible for the regrowth of TNBCs sunitinib administration was terminated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700