Genomewide identification, classification and analysis of NAC type gene family in maize
详细信息    查看全文
  • 作者:XIAOJIAN PENG ; YANG ZHAO ; XIAOMING LI ; MIN WU ; WENBO CHAI ; LEI SHENG…
  • 关键词:NAC transcription factor ; maize ; expression ; abiotic stress
  • 刊名:Journal of Genetics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:94
  • 期:3
  • 页码:377-390
  • 全文大小:3,485 KB
  • 参考文献:Aida M., Ishida T., Fukaki H., Fujisawa H. and Tasaka M. 1997 Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-57.
    Bailey T. L. and Elkan C. 1995 The value of prior knowledge in discovering motifs with MEME. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 21-9.
    Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J. and Sayers E. W. 2010 GenBank. Nucleic Acids Res. 38, D46–D51.
    Daimon Y., Takabe K. and Tasaka M. 2003 The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44, 113-21.
    Duval M., Hsieh T.-F., Kim S. Y. and Thomas T. L. 2002 Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237-48.
    Fang Y. J., You J., Xie K. B., Xie W. B. and Xiong L. Z. 2008 Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280, 547-63.
    Finn R. D., Mistry J., Schuster-B?ckler B., Griffiths-Jones S., Hollich V., Lassmann T. et al. 2006 Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251.
    Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M. et al. 2004 A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-76.
    Gaut B. S. 2002 Evolutionary dynamics of grass genomes. New Phytol. 154, 15-8.
    Gaut B. S., Morton B. R., McCaig B. C. and Clegg M. T. 1996 Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93, 10274-0279.
    Greve K., La Cour T., Jensen M., Poulsen F. and Skriver K. 2003 Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371, 97-08.
    Guo A. Y., Zhu Q. H., Chen X. and Luo J. C. 2007 GSDS: a gene structure display server. Yi Chuan 29, 1023-026.
    He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S. and Chen S. Y. 2005 AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903-16.
    Hibara Ki., Karim M. R., Takada S., Taoka Ki., Furutani M., Aida M. and Tasaka M. 2006 Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18, 2946-957.
    Hibara Ki, Takada S. and Tasaka M. 2003 CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 36, 687-96.
    Higo K., Ugawa Y., Iwamoto M. and Korenaga T. 1999 Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297-00.
    Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q. and Xiong L. 2006 Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103, 12987-2992.
    Kikuchi K., Ueguchi-Tanaka M., Yoshida K., Nagato Y., Matsusoka M. and Hirano H. Y. 2000 Molecular analysis of the NAC gene family in rice. Mol. Genet. Genomics 262, 1047-051.
    Kubo M., Udagawa M., Nishikubo N., Horiguchi G., Yamaguchi M., Ito J. et al. 2005 Transcription switches for protoxylem and metaxylem vessel formation. Gene Dev. 19, 1855-860.
    Letunic I., Doerks T. and Bork P. 2009 SMART 6: recent updates and new developments. Nucleic Acids Res. 37, D229–D232.
    Lin Y. X., Jiang H. Y., Chu Z. X., Tang X. L., Zhu S. W. and Cheng B. J. 2011 Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12, 76.
    Liu Y. Z., Baig M., Fan R., Ye J. L., Cao Y. C. and Deng X. X. 2009 Identification and expression pattern of a novel NAM, ATAF, and CUC-like gene from Citrus sinensis Osbeck. Plant Mol. Biol. Rep. 27, 292-97.
    Mitsuda N., Iwase A., Yamamoto H., Yoshida M., Seki M., Shinozaki K. and Ohme-Takagi M. 2007 NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19, 270-80.
    Mitsuda N. and Ohme-Takagi M. 2008 NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 56, 768-78.
    Mitsuda N., Seki M., Shinozaki K. and Ohme-Takagi M. 2005 The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17, 2993-006.
    Moore R. C. and Purugganan M. D. 2003 The early stages of duplicate gene evolution. Proc. Natl. Acad. Sci. USA 100, 15682-5687.
    Narusaka Y., Nakashima K., Shinwari Z. K., Sakuma Y., Furihata T., Abe H. et al. 2003 Interaction between two cis-acting e
  • 作者单位:XIAOJIAN PENG (1)
    YANG ZHAO (1)
    XIAOMING LI (1)
    MIN WU (1)
    WENBO CHAI (1)
    LEI SHENG (1)
    YU WANG (1)
    QING DONG (1)
    HAIYANG JIANG (1)
    BEIJIU CHENG (1)

    1. Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, People’s Republic of China
  • 刊物主题:Life Sciences, general; Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Evolutionary Biology;
  • 出版者:Springer India
  • ISSN:0973-7731
文摘
NAC transcription factors comprise a large plant-specific gene family. Increasing evidence suggests that members of this family have diverse functions in plant growth and development. In this study, we performed a genomewide survey of NAC type genes in maize (Zea mays L.). A complete set of 148 nonredundant NAC genes (ZmNAC1–ZmNAC148) were identified in the maize genome using Blast search tools, and divided into 12 groups (a–l) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental and tandem duplication contributed largely to the expansion of the maize NAC gene family. The K a/K s ratio suggested that the duplicated genes of maize NAC family mainly experienced purifying selection, with limited functional divergence after duplication events. Microarray analysis indicated most of the maize NAC genes were expressed across different developmental stages. Moreover, 19 maize NAC genes grouped with published stress-responsive genes from other plants were found to contain putative stress-responsive cis-elements in their promoter regions. All these stress-responsive genes belonged to the group d (stress-related). Further, these genes showed differential expression patterns over time in response to drought treatments by quantitative real-time PCR analysis. Our results reveal a comprehensive overview of the maize NAC, and form the foundation for future functional research to uncover their roles in maize growth and development. Keywords NAC transcription factor maize expression abiotic stress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700