An adaptive particle swarm optimization method based on clustering
详细信息    查看全文
  • 作者:Xiaolei Liang (1)
    Wenfeng Li (1)
    Yu Zhang (1)
    MengChu Zhou (1) (2)

    1. School of Logistics Engineering
    ; Wuhan University of Technology ; Wuhan ; 430063 ; Hubei ; China
    2. Department of Electrical and Computer Engineering
    ; New Jersey Institute of Technology ; Newark ; NJ ; 07102-1982 ; USA
  • 关键词:Particle swarm optimization (PSO) ; Function optimization ; Dynamic topology ; Cluster evaluation ; Adaptive particle swarm optimization
  • 刊名:Soft Computing - A Fusion of Foundations, Methodologies and Applications
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:19
  • 期:2
  • 页码:431-448
  • 全文大小:1,014 KB
  • 参考文献:1. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Soliton Fract 40(4):1715鈥?734 CrossRef
    2. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comp Ser 6(4):467鈥?84 CrossRef
    3. Brits R, Engelbrecht AP, Van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, Orchid Country Club, Singapore, vol 2, pp 692鈥?96
    4. Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl 38(5):4998鈥?004 CrossRef
    5. Chen D, Zhao C (2009) Particle swarm optimization with adaptive population size and its application. Appl Soft Comput 9(1):39鈥?8 CrossRef
    6. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58鈥?3 CrossRef
    7. Daneshyari M, Yen GG (2011) Cultural-based multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern B 41(2):553鈥?67 CrossRef
    8. Dong W, Zhou M (2014) Gaussian classifier-based evolutionary strategy for multimodal optimization. to appear in IEEE Trans Neural Networ Learn Syst
    9. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, IEEE, vol 1, pp 84鈥?8
    10. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, IEEE, pp 39鈥?3
    11. Fang Y, Chu F, Mammar S, Zhou M (2012) Optimal lane reservation in transportation network. IEEE Trans Intell Trans Syst 13(2):482鈥?91
    12. Ge HW, Sun L, Liang YC, Qian F (2008) An effective PSO and AIS-based hybrid intelligent algorithm for job-shop scheduling. IEEE Trans Syst Man Cybern A 38(2):358鈥?68 CrossRef
    13. Grimaldi EA, Grimaccia F, Mussetta M, Zich R (2004) PSO as an effective learning algorithm for neural network applications. In: Proceedings of 2004 3rd International Conference on Computational Electromagnetics and Its Applications, IEEE, pp 557鈥?60
    14. Holden N, Freitas AA (2005) A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, IEEE, pp 100鈥?07
    15. Hsieh ST, Sun TY, Liu CC, Tsai SJ (2009) Efficient population utilization strategy for particle swarm optimizer. IEEE Trans Syst Man Cybern B 39(2):444鈥?56 CrossRef
    16. Jie J, Zeng J, Han C, Wang Q (2008) Knowledge-based cooperative particle swarm optimization. Appl Math Comput 205(2):861鈥?73 CrossRef
    17. Kang Q, Lan T, Yan Y, Wang L, Wu Q (2012a) Group search optimizer based optimal location and capacity of distributed generations. Neurocomputing 78(1):55鈥?3 CrossRef
    18. Kang Q, Zhou M, Xu C (2012b) Solving optimal power flow problems subject to distributed generator failures via particle swarm intelligence. In: 2012 International Conference on Advanced Mechatronic Systems (ICAMechS), IEEE, pp 418鈥?23
    19. Kang Q, Zhou M, An J, Wu Q (2013) Swarm intelligence approaches to optimal power flow problem with distributed generator failures in power networks. IEEE Trans Autom Sci Eng 10(2):343鈥?53. doi:10.1109/TASE.2012.2204980 CrossRef
    20. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459鈥?71 CrossRef
    21. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, 1997, IEEE, pp 303鈥?08
    22. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, IEEE, vol 3
    23. Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of the 2000 Congress on Evolutionary Computation, IEEE, vol 2, pp 1507鈥?512
    24. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern C 36(4):515鈥?19 CrossRef
    25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, IEEE, vol 4, pp 1942鈥?948
    26. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, IEEE, vol 2, pp 1671鈥?676
    27. Khouadjia MR, Sarasola B, Alba E, Jourdan L, Talbi EG (2012) A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl Soft Comput 12(4):1426鈥?439 CrossRef
    28. Lanzarini L, Leza V, Giusti A (2006) Particle swarm optimization with variable population size. In: Proceedings of the 9th international conference on Artificial Intelligence and Soft Computing, Springer-Verlag, Berlin, pp 438鈥?49
    29. Leong WF, Yen GG (2008) PSO-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Trans Syst Man Cybern B 38(5):1270鈥?293 CrossRef
    30. Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Genetic and Evolutionary Computation-GECCO 2004, Springer, Berlin, pp 105鈥?16
    31. Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150鈥?69 CrossRef
    32. Li S, Tan M, Tsang IW, Kwok JY (2011) A hybrid PSO-BFGS strategy for global optimization of multimodal functions. IEEE Trans Syst Man Cybern B 41(4):1003鈥?014 CrossRef
    33. Li Y, Xiang R, Jiao L, Liu R (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061鈥?069 CrossRef
    34. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281鈥?95
    35. Liu Y, Lv M, Zuo W (2012) A new multimodal particle swarm optimization algorithm based on greedy algorithm. Int J Comput Intell Appl 11(03)
    36. Madeiro SS, Bastos-Filho CJA, Neto FBL, Figueiredo EMN (2009)Adaptative clustering particle swarm optimization. In: IEEE International Symposium on Parallel & Distributed Processing, pp聽1鈥?
    37. Mandal S, Kar R, Mandal D, Ghoshal SP (2011) Swarm intelligence based optimal linear phase FIR high pass filter design using particle swarm optimization with constriction factor and inertia weight approach. Int J Electr Electron Eng 5(4):296鈥?01
    38. Marinakis Y, Marinaki M (2013) Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Comput 17(7):1159鈥?173 CrossRef
    39. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204鈥?10 CrossRef
    40. Mendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, IEEE, pp 88鈥?4
    41. Montes de Oca M, Aydn D, Sttzle T (2011a) An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms. Soft Comput 15(11):2233鈥?255. doi:10.1007/s00500-010-0649-0 CrossRef
    42. Montes de Oca M, Stutzle T, Van den Enden K, Dorigo M (2011b) Incremental social learning in particle swarms. IEEE Trans Syst Man Cybern B 41(2):368鈥?84 CrossRef
    43. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inform Sci 209:16鈥?6 CrossRef
    44. Passaro A, Starita A (2006) Clustering particles for multimodal function optimization. In: Proceedings of ECAI Workshop on Evolutionary Computation, pp 124鈥?31
    45. Rada-Vilela J, Zhang M, Seah W (2013) A performance study on synchronicity and neighborhood size in particle swarm optimization. Soft Comput pp 1鈥?2
    46. Shi Y, Eberhart R (1998a) A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, IEEE, pp 69鈥?3
    47. Shi Y, Eberhart RC (1998b) Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, Springer, pp 591鈥?00
    48. Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation 2001, vol 1. IEEE, pp 101鈥?06
    49. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702鈥?13 CrossRef
    50. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL, Report 2005005
    51. Sun J, Fang W, Palade V, Wu X, Xu W (2011) Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Appl Math Comput 218(7):3763鈥?775 CrossRef
    52. Wu NQ, Zhou MC (2007) Shortest routing of bidirectional automated guided vehicles avoiding deadlock and blocking. IEEE/ASME Trans Mechatron 12(1):63鈥?2
    53. Xing K, Han L, Zhou M (2012) Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy. IEEE Trans Syst Man Cybern B 42(3):603鈥?15
    54. Xiong PC, Fan Y, Zhou MC (2009) Web service configuration under multiple quality-of-service attributes. IEEE Trans Autom Sci Eng 6(2):311鈥?21
    55. Yang XS (2010) Firefly algorithm, l茅vy flights and global optimization. Research and development in intelligent systems XXVI pp 209鈥?18
    56. Yu M, Zhou MC, Su W (2009) A secure routing protocol against Byzantine attacks for MANETs in adversarial environments. IEEE Trans Veh Technol 58(1):449鈥?60
    57. Zhan ZH, Zhang J, Li Y, Chung HH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B 39(6):1362鈥?381 CrossRef
    58. Zhang C, Yi Z (2011) Scale-free fully informed particle swarm optimization algorithm. Inform Sci 181(20):4550鈥?568 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Numerical and Computational Methods in Engineering
    Theory of Computation
    Computing Methodologies
    Mathematical Logic and Foundations
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-7479
文摘
Particle swarm optimization (PSO) is an effective method for solving a wide range of problems. However, the most existing PSO algorithms easily trap into local optima when solving complex multimodal function optimization problems. This paper presents a variation, called adaptive PSO based on clustering (APSO-C), by considering the population topology and individual behavior control together to balance local and global search in an optimization process. APSO-C has two steps. First, via a K-means clustering operation, it divides the swarm dynamically in the whole process to construct variable subpopulation clusters and after that adopts a ring neighborhood topology for information sharing among these clusters. Then, an adaption mechanism is proposed to adjust the inertia weight of all individuals based on the evaluation results of the states of clusters and the swarm, thereby giving the individual suitable search power. The experimental results of fourteen benchmark functions show that APSO-C has better performance in the terms of convergence speed, solution accuracy and algorithm reliability than several other PSO algorithms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700