Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation
详细信息    查看全文
  • 作者:Xiaolei Zhao (1)
    Xiaoman Liu (1)
    Chengjin Guo (1)
    Juntao Gu (2)
    Kai Xiao (1)
  • 关键词:Wheat (Triticum aestivum L.) ; miRNA ; Target gene ; Expression ; Low Pi stress
  • 刊名:Journal of Plant Biochemistry and Biotechnology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:22
  • 期:1
  • 页码:113-123
  • 全文大小:577KB
  • 参考文献:1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207-21 CrossRef
    2. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its / APETALA2-like target genes. Plant Cell 15:2730-741 CrossRef
    3. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000-011 CrossRef
    4. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988-99 CrossRef
    5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-97 CrossRef
    6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-33 CrossRef
    7. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185-190 CrossRef
    8. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336-38 CrossRef
    9. Chen X (2003) A microRNA as a translational repressor of APETALA2 in / Arabidopsis flower development. Science 303:2022-025 CrossRef
    10. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21-4 CrossRef
    11. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412-21 CrossRef
    12. Cui Q, Yu Z, Purisima EO, Wang E (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46 CrossRef
    13. de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inze D, Castresana C (1992) Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J 11:2595-602
    14. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29-8 CrossRef
    15. Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and / Oryza sativa. Plant Sci 176:170-80 CrossRef
    16. Floyd SK, Bowman JL (2004) Gene regulation: Ancient microRNA target sequences in plants. Nature 428:485-86 CrossRef
    17. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038-043 CrossRef
    18. Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47-7 CrossRef
    19. Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123-36 CrossRef
    20. Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and / arbuscular mycorrhizal signaling in / Solanum lycopersicum. Physiol Plant 138:226-37 CrossRef
    21. Guo L, Long S-X, Zhao F-H, Bao J-X, Guo C-J, Xiao K (2008) Analysis of P use efficiencies across the released cultivars in North China and determination of biochemical criteria for evaluation of phosphorus efficiency in wheat. J Plant Gen Resour 9(4):506-10
    22. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950-52 CrossRef
    23. Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009) Computational identification of microRNAs and their targets in wheat ( / Triticum aestivum L.). Sci China C ser- Life Sci 52:1091-100 CrossRef
    24. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120-132 CrossRef
    25. Jeong DH, German MA, Rymarquis LA, Thatcher SR, Green PJ (2009) Abiotic stress-associated miRNAs: detection and functional analysis. Method Mol Biol 592:203-30 CrossRef
    26. Kong Y, Elling AA, Chen B, Deng XW (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Amer J Plant Sci 1:69-6 CrossRef
    27. Kuo HF, Chiou TJ (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016-024 CrossRef
    28. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753-2758 CrossRef
    29. Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139-43 CrossRef
    30. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853-58 CrossRef
    31. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175-79 CrossRef
    32. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in / Arabidopsis meristems. Development 131:4311-322 CrossRef
    33. Lee RC, Feinbaum RL, Ambros V (1993) The / C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-54 CrossRef
    34. Li J, Liu X, Zhou W, Sun J, Tong Y, Liu W, Li ZS, Wang P, Yao S (1995) Technique of wheat breeding for efficiently utilizing soil nutrient elements. Sci China Ser B 38:1313-320
    35. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou J (2010) Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222-231 CrossRef
    36. Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427-438 CrossRef
    37. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119-131 CrossRef
    38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $ {2} -_{\text{T}}^{{\Delta \Delta C}} $ method. Methods 25:402-08 CrossRef
    39. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605-619 CrossRef
    40. Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296-03 CrossRef
    41. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in populus. Plant J 55:131-51 CrossRef
    42. Lundmark M, K?rner CJ, Nielsen TH (2010) Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiol Plant 140:57-8 CrossRef
    43. Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 83-16 CrossRef
    44. Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559-65 CrossRef
    45. Matzke MA, Primig M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643-49
    46. Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5:129-35 CrossRef
    47. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-89
    48. Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129-43 CrossRef
    49. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257-63 CrossRef
    50. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541-555 CrossRef
    51. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616-626 CrossRef
    52. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343-353 CrossRef
    53. Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743-48 CrossRef
    54. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001-019 CrossRef
    55. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is Mediated by Downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051-065 CrossRef
    56. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25 CrossRef
    57. Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85-6 CrossRef
    58. Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548-55 CrossRef
    59. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean ( / Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805-18 CrossRef
    60. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:427-47 CrossRef
    61. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669-87 CrossRef
    62. Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982-987 CrossRef
    63. Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y, Mao L (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat ( / Triticum aestivum L. and / Brachypodium distachyon L.). Beauv Funct Integr Genom 9(4):499-11 CrossRef
    64. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of / Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its / AtHD-ZIP target genes. Dev 132:3657-668 CrossRef
    65. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat ( / Triticum aestivum L.). BMC Plant Biol 10:123 CrossRef
    66. Yan X, Wu P, Ling H, Xu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot (Lond) 98:473-82 CrossRef
    67. Yin ZJ, Shen FF (2010) Identification and characterization of conserved microRNAs and their target genes in wheat ( / Triticum aestivum). Genet Mol Res 9:1186-196 CrossRef
    68. Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean ( / Glycine max L.). J Plant Physiol 167:1289-297 CrossRef
    69. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243-59 CrossRef
    70. Zhang H, Guo C, Li C, Xiao K (2008) Cloning, characterizatio and expression analysis of two superoxide dismutase (SOD) genes in wheat ( / Triticum aestivum L.). Front Agric China 2(2):141-49 CrossRef
    71. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Bioche Biophys Resea Commun 354:585-90 CrossRef
    72. Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM (2010) MicroRNA expression profiles associated with phosphorus deficiency in white lupin ( / Lupinus albus L.). Plant Sci 178:23-9 CrossRef
  • 作者单位:Xiaolei Zhao (1)
    Xiaoman Liu (1)
    Chengjin Guo (1)
    Juntao Gu (2)
    Kai Xiao (1)

    1. College of Agronomy, Agricultural University of Hebei, Baoding, Hebei Province, 071001, People’s Republic of China
    2. College of Life Sciences, Agricultural University of Hebei, Baoding, China, 071001
文摘
Plant microRNAs (miRNAs) are non-coding RNAs (19-4 nucleotides long) that play a critical role in the sequence-specific regulation of target gene transcripts. In this study, 32 miRNAs from wheat (Triticum aestivum L.) (TaMIRs) currently released in the miRBase database were subjected to expression pattern analysis under conditions of normal inorganic phosphate (Pi) supply and Pi deprivation stress. Semi-quantitative and quantitative reverse transcriptase polymerase chain reaction analysis revealed that 9 TaMIRs responded to Pi starvation: TaMIR159b, TaMIR167, TaMIR399, TaMIR408, TaMIR1122, TaMIR1125, TaMIR1135, TaMIR1136, and TaMIR1136 were up-regulated, whereas TaMIR408 was down-regulated. Small RNA blot analysis confirmed these results. Target prediction analysis indicated that the low Pi-responsive TaMIRs possessed variable target genes, ranging from none in TaMIR399 and TaMIR1122 to more than 20 in TaMIR1136. The target genes randomly selected from each low Pi-responsive TaMIR (except TaMIR399 and TaMIR1122) demonstrated an opposite expression pattern to the TaMIR, suggesting that the target genes were transcriptionally regulated by miRNA-mediated pathways. The target genes that interacted with the low Pi-responsive TaMIRs could be classified into diverse gene families, such as those involving transcription regulation, cell cycling, chromosome establishment, signal transduction, primary metabolism, phytohormone response, trafficking, defense response, and protein degradation. This study helps elucidate the plant regulatory mechanisms in response to low Pi signaling via the miRNA-mediated pathways in wheat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700