Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes
详细信息    查看全文
  • 作者:Yuan An ; Tingting Liu ; Xiaona Liu ; Lijun Zhao…
  • 关键词:Sodium arsenite ; Astrocytes ; Rho GTPases ; Apoptosis
  • 刊名:Biological Trace Element Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:170
  • 期:1
  • 页码:173-182
  • 全文大小:10,856 KB
  • 参考文献:1.Yu CW, Liao VH (2014) Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics 6(10):1824–1831. doi:10.​1039/​c4mt00160e CrossRef PubMed
    2.Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192. doi:10.​1016/​j.​taap.​2009.​01.​010 PubMedCentral CrossRef PubMed
    3.Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, Dwivedi HN, Pant AB, Khanna VK (2014) Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 279(3):428–440. doi:10.​1016/​j.​taap.​2014.​06.​006 CrossRef PubMed
    4.Zhang C, Li S, Sun Y, Dong W, Piao F, Piao Y, Liu S, Guan H, Yu S (2014) Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol Lett 228(3):260–269. doi:10.​1016/​j.​toxlet.​2014.​05.​007 CrossRef PubMed
    5.Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224(1):130–140. doi:10.​1016/​j.​toxlet.​2013.​10.​013 CrossRef PubMed
    6.Bhattacharya S, Haldar PK (2013) Trichosanthes dioica fruit extract ameliorates arsenic-induced brain toxicity in male albino rats. J Environ Pathol Toxicol Oncol 32(2):141–148CrossRef PubMed
    7.Wang F, Liu S, Xi S, Yan L, Wang H, Song Y, Sun G (2013) Arsenic induces the expressions of angiogenesis-related factors through PI3K and MAPK pathways in SV-HUC-1 human uroepithelial cells. Toxicol Lett 222(3):303–311. doi:10.​1016/​j.​toxlet.​2013.​08.​008 CrossRef PubMed
    8.Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S, Persson LA, Ekström EC (2009) Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 169(3):304–312. doi:10.​1093/​aje/​kwn332 CrossRef PubMed
    9.Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26(4):457–462PubMed
    10.Zhao F, Liao Y, Jin Y, Li G, Lv X, Sun G (2012) Effects of arsenite on glutamate metabolism in primary cultured astrocytes. Toxicol in Vitro 26(1):24–31. doi:10.​1016/​j.​tiv.​2011.​10.​003 CrossRef PubMed
    11.Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, López-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol Sci 122(2):539–550. doi:10.​1093/​toxsci/​kfr126 CrossRef PubMed
    12.Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601. doi:10.​1093/​toxsci/​kfq266 CrossRef PubMed
    13.Navas-Acién A, Pollán M, Gustavsson P, Plato N (2002) Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am J Ind Med 42(3):214–217CrossRef PubMed
    14.Leve F, Morgado-Díaz JA (2012) Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem 113(8):2549–2559. doi:10.​1002/​jcb.​24153 CrossRef PubMed
    15.Modolo F, Biz MT, de Sousa SM, Fachinelli Rde L, Crema VO (2012) Immunohistochemical expression of Rho GTPases in ameloblastomas. J Oral Pathol Med 41(5):400–407. doi:10.​1111/​j.​1600-0714.​2011.​01108.​x CrossRef PubMed
    16.Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314. doi:10.​3389/​fncel.​2014.​00314 PubMedCentral CrossRef PubMed
    17.Saoudi A, Kassem S, Dejean A, Gaud G (2014) Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases 5. doi: 10.​4161/​sgtp.​28208
    18.Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioassays 29(4):356–370CrossRef
    19.Ullah I, Lee HY, Kim MJ, Shah SA, Badshah H, Kim TH, Chung HJ, Yang BC, Kim MO (2013) Rho GTPase activating protein 15 (arhGAP15) siRNA effect apoptosis-induced by ethanol in bovine fibroblast cells. Pak J Pharm Sci 26(3):605–610PubMed
    20.Yih LH, Wu YC, Hsu NC, Kuo HH (2012) Arsenic trioxide induces abnormal mitotic spindles through a PIP4KIIγ/Rho pathway. Toxicol Sci 128(1):115–125. doi:10.​1093/​toxsci/​kfs129 CrossRef PubMed
    21.Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1(2):183–192CrossRef PubMed
    22.Gao J, Huang T, Zhou LJ, Ge YL, Lin SY, Dai Y (2014) Preconditioning effects of physiological cyclic stretch on pathologically mechanical stretch-induced alveolar epithelial cell apoptosis and barrier dysfunction. Biochem Biophys Res Commun 448(3):342–348. doi:10.​1016/​j.​bbrc.​2014.​03.​063 CrossRef PubMed
    23.Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A 94(19):10098–10103PubMedCentral CrossRef PubMed
    24.Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida K (2004) Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 10(14):4799–4805CrossRef PubMed
    25.Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B (2002) Rho GTPases in human breast tumors: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 87(6):635–644PubMedCentral CrossRef PubMed
    26.Cuiyan Z, Jie H, Fang Z, Kezhi Z, Junting W, Susheng S, Xiaoli F, Ning L, Xinhua M, Zhaoli C, Kang S, Bin Q, Baozhong L, Sheng C, Meihua X, Jie H (2007) Overexpression of RhoE in non-small Cell Lung Cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther 6(3):335–342CrossRef PubMed
    27.Wilson KF, Erickson JW, Antonyak MA, Cerione RA (2013) Rho GTPases and their roles in cancer metabolism. Trends Mol Med 19(2):74–82. doi:10.​1016/​j.​molmed.​2012.​10.​011 PubMedCentral CrossRef PubMed
    28.Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19(11):1518–1520CrossRef PubMed
    29.Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80(4):303–314. doi:10.​1016/​j.​aogh.​2014.​09.​005 CrossRef PubMed
    30.Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52(9):1353–1359CrossRef PubMed
    31.Letašiová S, Medve'ová A, Šovčíková A, Dušinská M, Volkovová K, Mosoiu C, Bartonová A (2012) Bladder cancer, a review of the environmental risk factors. Environ Health 11(Suppl 1):S11. doi:10.​1186/​1476-069X-11-S1-S11 PubMedCentral CrossRef PubMed
    32.Wu J, Ji Z, Liu H, Liu Y, Han D, Shi C, Shi C, Wang C, Yang G, Chen X, Shen C, Li H, Bi Y, Zhang D, Zhao S (2013) Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 220(1):61–69. doi:10.​1016/​j.​toxlet.​2013.​03.​019 CrossRef PubMed
    33.Yen CC, Ho TJ, Wu CC, Chang CF, Su CC, Chen YW, Jinn TR, Lu TH, Cheng PW, Su YC, Liu SH, Huang CF (2011) Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 85(6):565–575. doi:10.​1007/​s00204-011-0709-y CrossRef PubMed
    34.Liu X, Gao Y, Yao H, Zhou L, Pei J, Sun L, Wang J, Sun D (2014) p38 and extracellular signal-regulated kinases activations have opposite effects on primary-cultured rat cerebellar granule neurons exposed to sodium arsenite. J Biochem Mol Toxicol 28(4):143–148. doi:10.​1002/​jbt.​21546 CrossRef PubMed
    35.Duan Q, Komissarova E, Dai W (2009) Arsenic trioxide suppresses paclitaxel-induced mitotic arrest. Cell Prolif 42(3):404–411. doi:10.​1111/​j.​1365-2184.​2009.​00606.​x PubMedCentral CrossRef PubMed
    36.Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174(2):130–138CrossRef PubMed
    37.Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16PubMedCentral CrossRef PubMed
    38.Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C, Bommert K, Dorken B (2003) Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 102(3):1028–1034CrossRef PubMed
    39.Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92(1):57–70CrossRef PubMed
    40.Haga N, Fujita N, Tsuruo T (2005) Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Sci 96(11):825–833CrossRef PubMed
    41.Jacquier A, Buhler E, Schäfer MK, Bohl D, Blanchard S, Beclin C, Haase G (2006) Alsin/Rac1 signaling controls survival and growth of spinal motoneurons. Ann Neurol 60(1):105–117CrossRef PubMed
    42.Johanna GV, Fredy CA, David VC, Natalia MV, Angel CR, Patricia CG (2010) Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int 57(7):762–773. doi:10.​1016/​j.​neuint.​2010.​08.​014 CrossRef PubMed
    43.Shirokawa JM, Elisei R, Knauf JA, Hara T, Wang J, Saavedra HI, Fagin JA (2000) Conditional apoptosis induced by oncogenic ras inthyroid cells. Mol Endocrinol 14(11):1725–1738CrossRef PubMed
    44.Negishi T, Matsunaga Y, Kobayashi Y, Hirano S, Tashiro T (2013) Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats. Toxicol Sci 136(2):478–486. doi:10.​1093/​toxsci/​kft200 PubMedCentral CrossRef PubMed
    45.Liu X, Gao Y, Yao H, Zhou L, Sun D, Wang J (2013) Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol Trace Elem Res 155(3):439–446. doi:10.​1007/​s12011-013-9810-9 CrossRef PubMed
    46.Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26(4):457–462PubMed
    47.Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, López-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial Cells. Toxicol Sci 122(2):539–550. doi:10.​1093/​toxsci/​kfr126 CrossRef PubMed
    48.Liu L, You Q, Tu Y, Li Q, Zheng L, Li X, Gu J, Wang G (2015) Midazolam inhibits the apoptosis of astrocytes induced by oxygen glucose deprivation via targeting JAK2-STAT3 signaling pathway. Cell Physiol Biochem 35(1):126–136. doi:10.​1159/​000369681 CrossRef PubMed
    49.Le SS, Loucks FA, Udo H, Richardson-Burns S, Phelps RA, Bouchard RJ, Barth H, Aktories K, Tyler KL, Kandel ER, Heidenreich KA, Linseman DA (2005) Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 94(4):1025–1039PubMedCentral CrossRef PubMed
    50.Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276(42):39123–39131CrossRef PubMed
    51.Fujimura M, Usuki F, Sawada M, Rostene W, Godefroy D, Takashima A (2009) Methylmercury exposure downregulates the expression of Racl and leads to neuritic degeneration and ultimately apoptosis in cerebrocortical neurons. Neurotoxicology 30(1):16–22. doi:10.​1016/​j.​neuro.​2008.​10.​002 CrossRef PubMed
    52.Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expressionare altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. Plos One 8(9):e73720. doi:10.​1371/​journal.​pone.​0073720 PubMedCentral CrossRef PubMed
  • 作者单位:Yuan An (1)
    Tingting Liu (1)
    Xiaona Liu (1)
    Lijun Zhao (1)
    Jing Wang (1)

    1. Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People’s Republic of China
  • 刊物主题:Biochemistry, general; Biotechnology; Nutrition; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0720
文摘
This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity. Keywords Sodium arsenite Astrocytes Rho GTPases Apoptosis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700