Cloning and transcription analysis of six members of the calmodulin family in Gracilaria lemaneiformis under heat shock
详细信息    查看全文
  • 作者:Yuantao Liu ; Xuan Zhang ; Hengyi Sun ; Qin Yang ; Xiaonan Zang…
  • 关键词:Gracilaria lemaneiformis ; Rhodophyta ; Thermotolerance ; Calmodulin ; Transcription ; Heat shock stress
  • 刊名:Journal of Applied Phycology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:28
  • 期:1
  • 页码:643-651
  • 全文大小:838 KB
  • 参考文献:Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRef PubMed
    Blume B, Nurnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440CrossRef PubMedCentral PubMed
    Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7:1–17CrossRef
    Brawley SH, Fei XG (1988) Ecological studies of Gracilaria asiatica and Gracilaria lemaneiformis in Zhanshan Bay, Qingdao. Chin J Oceanol Limnol 6:20–34CrossRef
    Chen MZ, Xie HG, Yang LW, Liao ZH, Yu J (2010) In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol Sin 25:341–351CrossRef PubMed
    Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252CrossRef PubMedCentral PubMed
    Day IS, Reddy VS, Shad AG, Reddy AS (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3:1–24CrossRef
    DeFalco TA, Bender KW, Snedden WA (2009) Breaking the code: Ca2+ sensors in plant signaling. J Biochem 425:27–40CrossRef
    Fischer R, Koller M, Flura M, Mathews S, Strehler-Page M, Kribs J, Penniston JT, Carfoli E, Strehler E (1988) Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem 263:17055–17062PubMed
    Fan YL, Wang WH, Song W, Chen HS, Teng AG, Liu AJ (2012) Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis. Carbohydr Polym 88:1313–1318CrossRef
    Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151CrossRef
    Gu YH, Zhang X, Lu N, Zang XN, Zhang XC, Li GQ (2012) Cloning and transcription analysis of hsp70-1 and hsp70-2 of Gracilaria lemaneiformis under heat shock. Aquaculture 358–359:284–291CrossRef
    Gawienowske MC, Szymanski D, Perera IY (1993) Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol Biol 22:215–225CrossRef
    Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059CrossRef PubMed
    Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427CrossRef PubMed
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408CrossRef PubMed
    Lee SH, Kim JC, Lee MS et al (1995) Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. Biol Chem 270:21806–21812CrossRef
    Ling V, Perera IY, Zielingski RE (1991) Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol 96:1196–1202CrossRef PubMedCentral PubMed
    Lu N, Zang X, Zhang X, Chen H, Feng X, Zhang L (2012) Gene cloning, expression and activity analysis of manganese superoxide dismutase from two strains of Gracilaria lemaneiformis (Gracilariaceae, Rhodophyta) under heat stress. Molecules 17:4522–4532CrossRef PubMed
    Lu N, Ding Y, Zang XN, Zhang XC, Chen H, Mu XS (2013) Molecular cloning and expression analysis of glutathione peroxidase and glutathione reductase from Gracilaria lemaneiformis under heat stress. J Appl Phycol 25:1925–1931CrossRef
    Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250CrossRef PubMedCentral PubMed
    Mao YZ, Yang HS, Zhou Y, Ye NH, Fang JG (2009) Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J Appl Phycol 21:649–656CrossRef
    McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389CrossRef PubMed
    Matsuzaki M, Misumi O, Shin-I T, Maruyama S et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657CrossRef PubMed
    Nojima H (1989) Structural organization of multiple rat calmodulin genes. J Mol Biol 208:269–282CrossRef PubMed
    Nozaki H, Takano H, Misumi O, Terasawa K et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:1–8CrossRef
    Pei JC, Lin AP, Zhang FD, Zhu DL, Li J, Wang GC (2013) Using agar extraction waste of Gracilaria lemaneiformis in the paper making industry. J Appl Phycol 25:1135–1141CrossRef
    Perera IY, Zielinski RE (1992) Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol 19:649–664CrossRef PubMed
    Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226CrossRef PubMedCentral PubMed
    Perochon A, Aldon D, Galaud JP, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93:2048–2053CrossRef PubMed
    Qi ZH, Liu HM, Li B, Mao Y, Jiang ZJ, Zhang JH, Fang JG (2010) Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189–193CrossRef
    Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404CrossRef PubMed
    Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032CrossRef PubMedCentral PubMed
    Ren XY, Zhang XC (2008) Identification of a putative tetrasporophyte-specific gene in Gracilaria lemaneiformis (Gracilariaceae, Rhodophyta). J Ocean Univ China 7:299–303CrossRef
    Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304CrossRef
    Snedden W, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Physiol 151:35–66CrossRef
    Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417PubMedCentral PubMed
    Schönknecht G, Chen WH, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339(6124):1207–1210CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRef PubMedCentral PubMed
    Thompson JD, Gibson TJ, Plewniak F (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRef PubMedCentral PubMed
    Takezawa D, Liu ZH, An G, Poovaiah BW (1995) Calmodulin gene family in potato: developmental and touch-induced expression of mRNA encoding a novel isoform. Plant Mol Biol 27:693–703CrossRef PubMed
    Wang MQ, Mao YX, Zhuang YY, Kong FN, Sui ZH (2009) Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta). J Ocean Univ China 8:247–253CrossRef
    Yang TB, Segal G, Abbo S, Feldman M, Fromm H (1996) Characterization of the calmodulin gene family in wheat: structure, chromosome allocation, and evolutionary aspects. Mol Gen Genet 252:684–694CrossRef PubMed
    Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512CrossRef PubMed
    Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784CrossRef PubMedCentral PubMed
    Zielinske RE (2002) Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta 214:446–455CrossRef
    Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725CrossRef PubMed
    Zhou Y, Yang HS, Hu HY, Liu Y, Mao YZ, Zhou H (2006) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252:264–276CrossRef
    Zang XN, Zhang X, Gu YH, Lu N, Li GQ, Zhang XC, Zhang L, Tan YM, Yan AT (2011) Construction of suppression subtractive hybridization library of Gracilaria lemaneiformis under heat stress. Science paper online (http://​www.​paper.​edu.​cn )
  • 作者单位:Yuantao Liu (1)
    Xuan Zhang (1)
    Hengyi Sun (1)
    Qin Yang (1)
    Xiaonan Zang (1)
    Xuecheng Zhang (1)
    Yanmiao Tan (1)

    1. Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China
  • 刊物主题:Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1573-5176
文摘
Calmodulin (CaM) is essential in plants for signal transduction under environmental stress. To determine the function of CaMs in the thermal response of the red alga Gracilaria lemaneiformis, six cams were cloned from three strains, wild type and heat-tolerant cultivar 981 and 07-2. In wild type, w-cam1, w-cam2, and w-cam3 were cloned; in cultivar 981, 981-cam1 and 981-cam2 were obtained; and in cultivar 07-2, only 072-cam1 was identified. The cam1s in the three strains were identical. They contain 832 nucleotides, including four exons and three introns. The ORFs of w-cam2 and 981-cam2 were the same length, having 450 nucleotides without introns, and they shared 78 % similarity in nucleotides and 87 % in amino acids. In addition, w-cam3, a gene of 809 nucleotides, consisting of three exons and two introns, was cloned from the genomic DNA of wild type. The transcription levels of the cams under heat shock were tested by real-time quantitative PCR, except for w-cam2 and w-cam3, because these two cams could not be amplified effectively by RT-qPCR. Among all the cam1s, 981-cam1 expressed more highly under heat shock. Though w-cam1 and 072-cam1 were down-regulated under heat, the suppression level of 072-cam1 was slightly less than the wild type. For 981-cam2, the expression level was lower than that of 981-cam1 at 28 °C, while at 32 °C, the two cams of 981 had similar expression profiles. These results indicate that the cams may play an important role in G. lemaneiformis and that cam1 responds the most to heat shock. Keywords Gracilaria lemaneiformis Rhodophyta Thermotolerance Calmodulin Transcription Heat shock stress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700