An integrative study of larval organogenesis of American shad Alosa sapidissima in histological aspects
详细信息    查看全文
  • 作者:Xiaoqiang Gao 高小庿/a> ; Lei Hong 洪磊…
  • 关键词:Alosa sapidissima ; larval development ; ontogeny ; histology ; organ differentiation
  • 刊名:Chinese Journal of Oceanology and Limnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:34
  • 期:1
  • 页码:136-152
  • 全文大小:7,550 KB
  • 参考文献:Arellano J M, Storch V, Sarasquete C. 2002. Ultrastructural study on the intestine of Senegal sole, Solea senegalensis. J. Appl. Ichthyol., 18 (3): 154–158.CrossRef
    Chantanachookhin C, Seikai T, Tanaka M. 1991. Comparative study of the ontogeny of the lymphoid organs in three species of marine fish. Aquaculture, 99 (1-2): 143–155.CrossRef
    Comabella Y, Franyutti A H, Hurtado A, Canabal J, García-Galano T. 2013. Ontogenetic development of the digestive tract in Cuban gar ( Atractosteus tristoechus ) larvae. Rev. Fish Biol. Fisheries, 23 (2): 245–260.CrossRef
    Conceição L E, Yúfera M, Makridis P, Morais S, Dinis M T. 2010. Live feeds for early stages of fish rearing. Aquaculture Research, 41 (5): 613–640.CrossRef
    Elbal M T, García-Hernández M P, Lozano M T, Agulleiro B. 2004. Development of the digestive tract of gilthead sea bream ( Sparus aurata L.). Light and electron microscopic studies. Aquaculture, 234 (1-4): 215–238.
    Falk-Petersen I B. 2005. Comparative organ differentiation during early life stages of marine fish. Fish and Shellfish Immunol ogy, 19 (5): 397–412.CrossRef
    Gao X Q, Hong L, Liu Z F, Guo Z L, Wang Y H, Lei J L. 2015a. The definition of point of no return of larvae and feeding characteristics of Alosa sapidissim a larvae and juvenile. Journal of Fisheries of China, 39 (3): 392–400. (in Chinese with English abstract)
    Gao X Q, Hong L, Liu Z F, Guo Z L, Wang Y H, Lei J L. 2015b. The study of allometric growth pattern of American shad larvae and juvenile ( Alosa sapidissima ). Acta Hydrobiologica Sinica, 39 (3): 638–644. (in Chinese with English abstract)
    Gisbert E, Piedrahita R H, Conklin D E. 2004. Ontogenetic development of the digestive system in California halibut ( Paralichthys californicus ) with notes on feeding practices. Aquaculture, 232 (1-4): 455–470.CrossRef
    Gisbert E, Sarasquete M C, Williot P, Castelló-Orvay F. 1999. Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. J. Fish Biol., 55 (3): 596–616.CrossRef
    Govoni J J, Boehlert G W, Watanabe Y. 1986. The physiology of digestion in fish larvae. Environ. Biol. Fishes, 16 (1-3): 59–77.CrossRef
    Hachero-Cruzado I, Ortiz-Delgado J B, Borrega B, Herrera M, Navas J I, Sarasquete C. 2009. Larval organogenesis of flatfish brill Scophthalmus rhombus L: histological and histochemical aspects. Aquaculture, 286 (1-2): 138–149.CrossRef
    Hall T E, Smith P, Johnston I A. 2004. Stages of embryonic development in the Atlantic cod Gadus morhua. Journal of Morphology, 259 (3): 255–270.CrossRef
    Hamre K, Yúfera M, Rønnestad I, Boglione C, Conceição L E C, Izquierdo M. 2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5 (S1): S26–S58.CrossRef
    He T, Xiao Z Z, Liu Q H, Ma D Y, Xu S H, Xiao Y S, Li J. 2012. Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol. Biochem., 38 (2): 297–308.CrossRef
    Hirji K N, Courtney W A M. 1983. Non-specific carboxylic esterase activity in the digestive tract of the perch, Perca fluviatilis L. J. Fish Biol., 22 (1): 1–7.CrossRef
    Hong X Y, Zhu X P, Chen K C, Pan D B, Li K B. 2013. Ontogenetic development of the digestive tract in larvae of American shad. North American Journal of Aquaculture, 75 (2): 220–227.CrossRef
    Hong X Y. 2011. Study on the morphogenesis and histology of the early American shad Alosa sapidissima. Shanghai Ocean University, Shanghai. p.1-60. (in Chinese)
    Kato K, Ishimaru K, Sawada Y, Mutsuro J, Miyashita S, Murata O, Kumai H. 2004. Ontogeny of digestive and immune system organs of larval and juvenile kelp grouper Epinephelus bruneus reared in the laboratory. Fisheries Science, 70 (6): 1 061–1 069.CrossRef
    Klauda R J. 1994. Lethal and critical effects thresholds for American shad eggs and larvae exposed to acid and aluminum in the laboratory, with speculation on the potential role of habitat acidification on stock status in Maryland. In: Cooper J E, Eades R J, Klauda R J, Loesch J G eds. Anadromous Alosa Symposium. American Fisheries Society Tidewater Chapter, Bethesda, Maryland. p.7–39.
    Kozarić Z, Kužir S, Petrinec Z, Gjurčević E, Božić M. 2008. The development of the digestive tract in larval European catfish ( Silurus glanis L.). Anatomia, histologia, embryologia, 37 (2): 141–146.CrossRef
    Leach S D, Houde E D. 1999. Effects of environmental factors on survival, growth, and production of American shad larvae. Journal of Fish Biology, 54 (4): 767–786.CrossRef
    Leonard J B K, McCormick S D. 1999. Effects of migration distance on whole-body and tissue-specific energy use in American shad ( Alosa sapidissima ). Can. J. Fish. Aquat. Sci., 56 (7): 1 159–1 171.CrossRef
    Leonard J B K, Norieka J F, Kynard B, McCormick S D. 1999. Metabolic rates in an anadromous clupeid, the American shad ( Alosa sapidissima ). J. Comp. Physiol. B, 169 (4-5): 287–295.CrossRef
    Limburg K E, Hattala K A, Kahnle A. 2003. American shad in its native range. In: Limburg K E, Waldman J R eds. Biodiversity, Status, and Conservation of the World’s Shads. American Fisheries Society Symposium 35, Bethesda, Maryland. p.125–140.
    Liu Y, Zhang S C, Jiang G L, Yang D, Lian J H, Yang Y W. 2004. The development of the lymphoid organs of lounder, Paralichthys olivaceus, from hatching to 13 months. Fish Shellfish. Immu nol., 16 (5): 621–632.CrossRef
    Mai K, Yu H, Ma H, Duan Q, Gisbert E, Zambonino Infante J L, Cahu C L. 2005. A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles. J. Fish Biol., 67 (4): 1 094–1 106.CrossRef
    Micale V, Garaffo M, Genovese L, Spedicato M T, Muglia U. 2006. The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L. Aquaculture, 251 (2-4): 354–365.CrossRef
    Morrison C M. 1993. Histology of the Atlantic Cod, Gadus morhua: An Atlas. Part Four: Eleutheroembryo and Larva/ Atlas d’histologie de la morue franche, Gadus morhua. Quatrième partie. Éleuthéro-embryon et larve. Accents Pubns Service. 496p.
    Moyano F J, Barros A M, Prieto A, Cañ avate J P, Cá rdenas S. 2005. Evaluación de la ontogenia de enzimas digestivas en larvas de hurta, Pagrus auriga (Pisces: Sparidae). Revista Aquatic, 22 (5): 39–47.
    Murray H M, Wright G M, Golf G P. 1994. A study of the posterior esophagus in the winter flounder, Pteuronectes americanus, and the yellowtail flounder, Pleuronectes ferruginea: morphological evidence for pregastric digestion? Can. J. Zool., 72 (7): 1 191–1 198.
    Padrós F, Crespo S. 1996. Ontogeny of the lymphoid organs in the turbot Scophthalmus maximus: a light and electron microscope study. Aquaculture, 144 (1-3): 1–16.CrossRef
    Padrós F, Villalta M, Gisbert E, Estévez A. 2011. Morphological and histological study of larval development of the Senegal sole Solea senegalensis: an integrative study. Journal of Fish Biology, 79 (1): 3–32.CrossRef
    Papadakis I E, Kentouri M, Divanach P, Mylonas C C. 2013. Ontogeny of the digestive system of meagre Argyrosomus regius reared in a mesocosm, and quantitative changes of lipids in the liver from hatching to juvenile. Aquaculture, 388-391: 76–88.CrossRef
    Pradhan P K, Jena J K, Mitra G, Sood N, Gisbert E. 2012. Ontogeny of the digestive tract in butter catfish Ompok bimaculatus (Bloch) larvae. Fish Physiol. Biochem., 38 (6): 1 601–1 617.CrossRef
    Ribeiro L, Sarasquete C, Dinis M T. 1999. Histological and histochemical development the digestive system of Solea senegalensis (Kaup, 1858) larvae. Aquaculture, 171 (3-4): 293–308.CrossRef
    Rombough P J. 2004. Gas exchange, ionoregulation, and the functional development of the teleost gill. Am. Fish. Soc. Symp., 40: 47–83.
    Sánchez-Amaya M I, Ortiz-Delgado J B, García-López Á, Cardenas S, Sarasquete C. 2007. Larval ontogeny of redbanded seabream Pagrus auriga Valenciennes, 1843 with special reference to the digestive system. A histological and histochemical approach. Aquaculture, 263(1-4): 259–279.
    Santamaría C A, De Mateo M M, Traveset R, Sala R, Grau A, Pastorc E, Sarasqueted C, Crespo S. 2004. Larval organogenesis in common dentex Dentex dentex L. (Sparidae): histological and histochemical aspects. Aquaculture, 237(1-4): 207–228.
    Schrøder M B, Villena A J, Jørgensen T Ø. 1998. Ontogeny of lymphoid organs and immunoglobulin producing cells in Atlantic cod ( Gadus morhua L.). Developmental & Comparative Immunology, 22(5-6): 507–517.CrossRef
    Scott W B, Crossman W J. 1973. Freshwater Fishes of Canada. Gordon Soules Book Pub. 966p.
    Segner H, Rösch R, Schmidt H, Von Poeppinghausen K J. 1989. Digestive enzymes in larval Coregonus lavaretus L. J. Fish Biol., 35(2) 249–263.CrossRef
    Segner H, Rösch R, Verreth J, Witt U. 1993. Larval nutritional physiology: studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus. J. World Aquacult. Soc., 24(2) 121–134.CrossRef
    Shardo J D. 1995. Comparative embryology of teleostean fishes. I. Development and staging of the American shad, Alosa sapidissima (Wilson, 1811). J. Morphol., 225(2) 125–167.
    Stroband H W J, Kroon A G. 1981. The development of the stomach in Clarias lazera and the intestinal absorption of protein macromolecules. Cell Tissue Res., 215(2) 397–415.CrossRef
    Tanaka M, Tanangonan J B, Tagawa M, De Jesus E G, Nishida H, Isaka M, Kimura R, Hirano T. 1995. Development of the pituitary, thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture, 135(1-3): 111–126.CrossRef
    Verreth J A J, Torreele E, Spazier E, Van Der Sluiszen A, Rombout J H W M, Booms R, Segner H. 1992. The development of a functional digestive system in the African catfish, Clarias garipinus (Burchell). J. World Aquacult. Soc., 23(4) 286–298.CrossRef
    Walburg C H, Nichols P R. 1967. Biology and management of the American shad and status of the fisheries, Atlantic coast of the United States, 1960. United States Department of the Interior, Washington, D C. p.1–105.
    Wan Z Z, Gao T X, Zhang X M, Chen C, Yu C H. 2006. Histological study on the digestive system development of Takifugu rubripes larvae and juvenile. Journal of Ocean University of China, 5(1) 39–44.CrossRef
    Watts M, Kato K, Munday B L, Burke C M. 2003. Ontogeny of immune system organs in northern bluefin tuna (Thunnus orientalis, Temminck and Schlegel 1844). Aquac. Res., 34(1) 13–21.CrossRef
    Wu H W, Wang B, Shi W et al. 2004. Study on culture technology of American shad (Alosa sapidissima ) on a large scale I. juveniles culturing. Chinese Journal of Fisheries, 17(2) 61–64. (in Chinese with English abstract)
    Xiao Z Z, Yu D D, Sun Z Z, Xu S H, Ma D Y, Li J. 2008. Ontogeny of immune organs during early development stage of barfin flounder. Marine Sciences, 32(7) 88–92. (in Chinese with English abstract)
    Xiao Z H, He T, Li J, Gao T X. 2013. Ontogeny of the immune system in rock bream Oplegnathus fasciatus. Chinese Journal of Oceanology and Limnology, 31(5): 1028–1 035.CrossRef
    Xu G C, Zhang C X, Zheng J L, Gu R B. 2012. Artificial propagation and embryonic development of American shad, Alosa sapidissima. Marine Sciences, 36(7) 89–96. (in Chinese with English abstract)
    Yang R B, Xie C X, Fan Q X, Gao C, Fang L B. 2010. Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2): 112–123.CrossRef
    Yúfera M, Fernández-Díaz C, Pascual E, Sarasquete M C, Moyano F J, Díaz M, Alarcón F J, García-Gallego M, Parra G. 2000. Towards an inert diet for first-feeding gilthead seabream (Sparus aurata L.) larvae. Aquac. Nutr., 6(3) 143–152.CrossRef
    Yúfera M, Ortiz-Delgado J B, Hoffman T, Siguero I, Urup B, Sarasquete C. 2014. Organogenesis of digestive system, visual system and other structures in Atlantic bluefin tuna (Thunnus t hynnus ) larvae reared with copepods in mesocosm system. Aquaculture, 426-427: 126–137.CrossRef
    Zaiss M M, Papadakis I E, Maingot E, Divanach P, Mylonas C C. 2006. Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture, 260(1-4): 357–368.CrossRef
    Zambonino-Infante J L, Cahu C L. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology Part C, 103(4) 477–487.
    Zambonino-Infante J L, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu C L. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino J E O, Bureau D, Kapoor B G eds. Feeding and Digestive Functions of Fishes. Science Publishers Inc., Enfield, USA. p.277–344.
    Zapata A, Diez B, Cejalvo T, De Frías C G, Cortés A. 2006. Ontogeny of the immune system of fish. Fish Shellfish. Immu nol., 20(2) 126–136.CrossRef
    Zhang C X, Xu G C, Xu P, Zheng J L, Gu R B. 2010. Morphological development and growth of American shad (Alosa sapidissima ) at larvae, fry and juvenile stages. Journal of Fishery Sciences of China, 17(16): 1227–1 235. (in Chinese with English abstract)
    Zydlewski J, McCormick S D. 1997. The ontogeny of salinity tolerance in the American shad, Alosa sapidissima. Canadian Journal of Fisheries and Aquatic Sciences, 54(1) 182–189.CrossRef
  • 作者单位:Xiaoqiang Gao 高小强 (1) (2)
    Lei Hong 洪磊 (2)
    Zhifeng Liu 刘志峰 (1) (2)
    Zhenglong Guo 郭正龙 (3)
    Yaohui Wang 王耀辉 (3)
    Jilin Lei 雷霁霖 (2)

    1. College of Fisheries, Ocean University of China, Qingdao, 266003, China
    2. Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
    3. Jiangsu Zhongyang Group, Nantong, 226600, China
  • 刊物主题:Oceanography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-5005
文摘
We describe organogenesis at a histological level in American shad (Alosa sapidissima) larvae from 0 until 45 days after hatching (DAH). Larval development was divided into four stages based on the feeding mode, external morphological features, and structural changes in the organs: stage 1 (0–2 DAH), stage 2 (3–5 DAH), stage 3 (6–26 DAH) and stage 4 (27–45 DAH). At early stage 2 (3 DAH), American shad larvae developed the initial digestive and absorptive tissues, including the mouth and anal opening, buccopharyngeal cavity, oesophagus, incipient stomach, anterior and posterior intestine, differentiated hepatocytes, and exocrine pancreas. The digestive and absorptive capacity developed further in stages 2 to 3, at which time the pharyngeal teeth, taste buds, gut mucosa folds, differentiated stomach, and gastric glands could be observed. Four defined compartments were discernible in the heart at 4 DAH. From 3 to 13 DAH, the excretory systems started to develop, accompanied by urinary bladder opening, the appearance and development of primordial pronephros, and the proliferation and convolution of renal tubules. Primordial gills were detected at 2 DAH, the pseudobranch was visible at 6 DAH, and the filaments and lamellae proliferated rapidly during stage 3. The primordial swim bladder was first observed at 2 DAH and started to inflate at 9 DAH; from then on, it expanded constantly. The spleen was first observed at 8 DAH and the thymus was evident at 12 DAH. From stage 4 onwards, most organs essentially manifested an increase in size, number, and complexity of tissue structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700