Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish
详细信息    查看全文
  • 作者:Mengmeng Li (1)
    Xuejie Wang (1)
    Jingai Zhu (1)
    Shasha Zhu (1)
    Xiaoshan Hu (1)
    Chun Zhu (1)
    Xirong Guo (1)
    Zhangbin Yu (1)
    Shuping Han (1)

    1. State Key Laboratory of Reproductive Medicine
    ; Department of Pediatrics ; Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University ; Nanjing ; 210029 ; China
  • 关键词:Zebrafish ; Polychlorinated biphenyls ; Heart ; Development ; Signaling pathway
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:41
  • 期:12
  • 页码:7973-7983
  • 全文大小:1,020 KB
  • 参考文献:1. Dolk H, Loane M, Garne E (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 123:841鈥?49. doi:10.1161/CIRCULATIONAHA.110.958405 CrossRef
    2. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943鈥?48. doi:10.1038/nature06801 CrossRef
    3. Mone SM, Gillman MW, Miller TL, Herman EH, Lipshultz SE (2004) Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence. Pediatrics 113:1058鈥?069
    4. Pompa G, Caloni F, Fracchiolla ML (2003) Dioxin and PCB contamination of fish and shellfish: assessment of human exposure. Review of the international situation. Vet Res Commun 27(Suppl 1):159鈥?67 CrossRef
    5. Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev 16:5鈥?3
    6. Guvenius DM, Aronsson A, Ekman-Ordeberg G, Bergman A, Noren K (2003) Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. Environ Health Perspect 111:1235鈥?241 CrossRef
    7. Solomon GM, Weiss PM (2002) Chemical contaminants in breast milk: time trends and regional variability. Environ Health Perspect 110:A339鈥揂347 CrossRef
    8. Shen H, Main KM, Virtanen HE, Damggard IN, Haavisto AM, Kaleva M, Boisen KA, Schmidt IM, Chellakooty M, Skakkebaek NE et al (2007) From mother to child: investigation of prenatal and postnatal exposure to persistent bioaccumulating toxicants using breast milk and placenta biomonitoring. Chemosphere 67:S256鈥揝262 CrossRef
    9. Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullen J, Tinglestad J, Tully M (1986) Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr 109:335鈥?41 CrossRef
    10. Taylor PR, Lawrence CE, Hwang HL, Paulson AS (1984) Polychlorinated biphenyls: influence on birthweight and gestation. Am J Public Health 74:1153鈥?154 CrossRef
    11. Wang YP, Hong Q, Qin DN, Kou CZ, Zhang CM, Guo M, Guo XR, Chi X, Tong ML (2012) Effects of embryonic exposure to polychlorinated biphenyls on zebrafish ( / Danio rerio) retinal development. J Appl Toxicol 32:186鈥?93. doi:10.1002/jat.1650 CrossRef
    12. Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39鈥?8 CrossRef
    13. Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET et al (2006) Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics 27:351鈥?61 CrossRef
    14. Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genom 11:212. doi:10.1186/1471-2164-11-212 CrossRef
    15. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6鈥?9 CrossRef
    16. Jones HS, Panter GH, Hutchinson TH, Chipman JK (2010) Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7:23鈥?0. doi:10.1089/zeb.2009.0630 CrossRef
    17. Teraoka H, Dong W, Hiraga T (2003) Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom 43:123鈥?32 CrossRef
    18. Gittenberger-de Groot AC, Bartelings MM, Deruiter MC, Poelmann RE (2005) Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 57:169鈥?76 CrossRef
    19. Kwon C, Cordes KR, Srivastava D (2008) Wnt/beta-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 7:3815鈥?818 CrossRef
    20. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169鈥?181. doi:10.1161/CIRCRESAHA.108.174318 CrossRef
    21. Keegan BR, Feldman JL, Begemann G, Ingham PW, Yelon D (2005) Retinoic acid signaling restricts the cardiac progenitor pool. Science 307:247鈥?49 CrossRef
    22. Westerfield M (1993) The Zebrafish Book: a guide for the laboratory use of Zebrafish ( / Danio rerio) [M].Edition 4. Eugene OR: Univ. of Oregon Press
    23. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253鈥?10 CrossRef
    24. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59鈥?9. doi:10.1038/nprot.2007.514 CrossRef
    25. Chen JN, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809鈥?816
    26. Yelon D, Horne SA, Stainier DY (1999) Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214:23鈥?7 CrossRef
    27. Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK (2006) Wnt signals mediate a fate decision between otic placode and epidermis. Development 133:865鈥?75 CrossRef
    28. Park SS, Miller H, Klotz AV, Kloepper-Sams PJ, Stegeman JJ, Gelboin HV (1986) Monoclonal antibodies to liver microsomal cytochrome P-450E of the marine fish / Stenotomus chrysops (scup): cross reactivity with 3-methylcholanthrene induced rat cytochrome P-450. Arch Biochem Biophys 249:339鈥?50 CrossRef
    29. Grimes AC, Erwin KN, Stadt HA, Hunter GL, Gefroh HA, Tsai HJ, Kirby ML (2008) PCB126 exposure disrupts zebrafish ventricular and branchial but not early neural crest development. Toxicol Sci 106:193鈥?05 CrossRef
    30. Yutzey KE, Rhee JT, Bader D (1994) Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120:871鈥?83
    31. Rottbauer W, Wessels G, Dahme T, Just S, Trano N et al (2006) Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99:323鈥?31 CrossRef
    32. Ryckebusch L, Wang Z, Bertrand N, Lin SC, Chi X, Schwartz R, Zaffran S and Niederreither K (2008) Retinoic acid deficiency alters second heart field formation. Proceedings of the National Academy of Sciences of the United States of America 105: 2913鈥?918. doi:10.1073/pnas.0712344105
    33. Lescroart F, Meilhac SM (2012) Cell lineages, growth and repair of the mouse heart. Results Probl Cell Differ 55:263鈥?89. doi:10.1007/978-3-642-30406-4_15
    34. Quaife NM, Watson O, Chico TJ (2012) Zebrafish: an emerging model of vascular development and remodelling. Curr Opin Pharmacol 12:608鈥?14. doi:10.1016/j.coph.2012.06.009 CrossRef
    35. Sisman T, Geyikoglu F, Atamanalp M (2007) Early life-stage toxicity in zebrafish ( / Danio rerio) following embryonal exposure to selected polychlorinated biphenyls. Toxicol Ind Health 23:529鈥?36 CrossRef
    36. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933鈥?42 CrossRef
    37. Puga A (2011) Perspectives on the potential involvement of the AH receptor-dioxin axis in cardiovascular disease. Toxicol Sci 120:256鈥?61. doi:10.1093/toxsci/kfq393 CrossRef
    38. Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:a007864. doi:10.1101/cshperspect.a007864 CrossRef
    39. Mohamed OA, Clarke HJ, Dufort D (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231:416鈥?24 CrossRef
    40. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in / Xenopus laevis. Genes Dev 15:304鈥?15 CrossRef
    41. Panakova D, Werdich AA, Macrae CA (2010) Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca(2+) channel. Nature 466:874鈥?78. doi:10.1038/nature09249 CrossRef
    42. Eisenberg CA, Eisenberg LM (1999) WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 216:45鈥?8 CrossRef
    43. Safe SH (1994) Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87鈥?49 CrossRef
    44. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309鈥?34 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700