A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy
详细信息    查看全文
  • 作者:Shengbo Jiao ; Chao Gao ; Li Cheng ; Xiaowei Li…
  • 关键词:crack initiation ; distribution test ; fatigue limit ; TC17 titanium alloy ; very high ; cycle fatigue
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:25
  • 期:3
  • 页码:1085-1093
  • 全文大小:2,555 KB
  • 参考文献:1.B. Pyttel, D. Schwerdt, and C. Berger, Very High Cycle Fatigue—is There a Fatigue Limit?, Int. J. Fatigue, 2011, 33, p 49–58CrossRef
    2.C. Bathias and P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components, Int. J. Fatigue, 2010, 32, p 894–897CrossRef
    3.L. Yu-Heng, X. Zhi-Yu, H. Lei et al., Ultra-High Cycle Fatigue Behaviour of Warm Compaction Fe-Cu-Ni-Mo-C Sintered Material, Mater. Des., 2014, 55, p 758–763
    4.P. Grad, B. Reuscher, and A. Brodyanski, Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels, Scr. Mater., 2012, 67, p 838–841CrossRef
    5.H. Stefan, B. Frank, W. Guntram et al., Analysis of Fatigue Properties and Failure Mechanisms of Ti6Al4V in the Very High Cycle Fatigue Regime Using Ultrasonic Technology and 3D Laser Scanning Vibrometry, Ultrasonics, 2013, 53, p 1433–1440CrossRef
    6.P.F. Filgueiras, C. Bathias, E.S. Palma et al., Inducing Very High Cycle Fretting-Fatigue in the Ultrasonic Regime, Tribol. Int., 2014, 76, p 57–62CrossRef
    7.Bathias C, Paris P.C. Gigacycle Fatigue in Mechanical Practice. NewYork: Marcel Dekker, 2005.
    8.MIL-HDBK, 1783BW/CHANGE2, Engine Structural Integrity Programs (ENSIP). US Department of Defense, Washington, 2004.
    9.M. Bruchhausen, P. Hähner, B. Fischer et al., Device for Carrying Out Environmental Very High Cycle Fatigue Tests With Ultrasonic Excitation in Asymmetric Push-Pull Mode, Int. J. Fatigue, 2013, 52, p 11–19CrossRef
    10.M. Nakajima, K. Tokaji, and H. Itoga, Effect of Loading Condition on Very High Cycle Fatigue Behavior in a High Strength Steel, Int. J. Fatigue, 2010, 32, p 475–480CrossRef
    11.N. Baohua, Zh Zheng, Zh Zihua et al., Effect of Anodizing Treatment on the Very High Cycle Fatigue Behavior of 2A12-T4 Aluminum Alloy, Mater. Des., 2013, 50, p 1005–1010CrossRef
    12.H. Youshi, L. Zhengqiang, S. Chengqi et al., Propensities of Crack Interior Initiation and Early Growth for Very-High-Cycle Fatigue of High Strength Steels, Int. J. Fatigue, 2014, 58, p 144–151CrossRef
    13.Ch Guocai and Zh Nian, Study of Crack Initiation or Damage in Very High Cycle Fatigue Using Ultrasonic Fatigue Test and Microstructure Analysis, Ultrasonics, 2013, 53, p 1406–1411CrossRef
    14.Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida, High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25(8/9), p 823–830CrossRef
    15.T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi et al., Experimental Reconfirmation of Characteristic S-N Property for High Carbon Chromium Bearing Steel in Wide Life Region in Rotating Bending, J Soc Mater Sci Jpn, 2000, 49(7), p 779–785CrossRef
    16.X. Hongqian, T. Hua, W. Qingyuan et al., Development of a Three-Point Bending Fatigue Testing Methodology at 20 kHz Frequency, Int. J. Fatigue, 2007, 29, p 2085–2093CrossRef
    17.T. Weiwei and W. Hong, Method of Ultrasonic Bending Fatigue and Application, Mech. Eng., 2008, 30(6), p 43–46
    18.Y. Shimamura, K. Narita, H. Ishii et al., Fatigue Properties of Carburized Alloy Steel in Very High Cycle Regime Under Torsional Loading, Int. J. Fatigue, 2014, 60, p 57–62CrossRef
    19.I. Marines, D. Jean-Pierre, and C. Bathias, Development of a New Device to Perform Torsional Ultrasonic Fatigue Testing, Int. J. Fatigue, 2007, 29, p 2094–2101CrossRef
    20.Ni J, Bathias C. Development of an ultrasonic fatigue device and its application in fatigue behavior studies. 10th International Conference on Experimental Mechanics, 1994, Lisbon, Portugal.
    21.I. Marines, X. Bin, and C. Bathias, An Understanding of Very High Cycle Fatigue of Metals, Int. J. Fatigue, 2003, 25, p 1101–1107CrossRef
    22.Y. Furuya, S. Matsuoka, T. Abe, and K. Yamaguchi, Gigacycle Fatigue Properties for High-Strength Low-Alloy Steel at 100 Hz, 600 Hz, and 20 kHz, Scripta Mater., 2002, 46, p 157–162CrossRef
    23.W. Qingyuan, J.Y. Berard, A. Dubarre et al., Gigacycle Fatigue of Ferrous Alloys, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 667–672CrossRef
    24.Chuanyao Ch. Fatigue and Fracture. Huazhong Science and Technology University Press, 2002.
    25.J. Schijve, A normal Distribution or a Weibull Distribution for Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 1993, 8, p 851–859CrossRef
    26.N. Ranc, D. Wagner, and P.C. Paris, Study of Thermal Effects Associated with Crack Propagation During Very High Cycle Fatigue Tests, Acta Mater., 2008, 56, p 4012–4021CrossRef
    27.L. Zhengqiang, H. Youshi, X. Jijia et al., Effects of Inclusion Size and locaTIon on Very-High-Cycle Fatigue Behavior for High Strength Steels, Materials Science&EngineeringA, 2012, 558, p 234–241
    28.Y. Furuya, H. Hirukawa, T. Kimura et al., Gigacycle Fatigue Properties of High-Strength Steels According to Inclusion and ODA Sizes, Metall. Mater. Trans. A, 2007, 38, p 1722–1730CrossRef
    29.S.E. Stanzl-Tschegg, Fracture Mechanisms and Fracture Mechanics at Ultrasonic Frequencies, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 567–579CrossRef
    30.L. Chengli, Lu Zhengzhou, X. Youliang et al., Reliability Analysis for Low Cycle Fatigue Life of the Aeronautical Engine Turbine Disc Structure Under Random Environment, Mater. Sci. Eng. A, 2005, 395, p 218–225CrossRef
    31.P. Liangming, F. Penghuai, L. Zhenming et al., High Cycle Fatigue Behaviors of Low Pressure Cast Mg-3Nd-0.2Zn-2Zr Alloys, Mater. Sci. Eng., A, 2014, 611, p 170–176CrossRef
    32.S. Sadek and M. Olsson, New Models for Prediction of High Cycle Fatigue Failure Based on Highly Loaded Regions, Int. J. Fatigue, 2014, 66, p 101–110CrossRef
    33.Y. Weixing and G. Shenjie, VHCF Test and Life Distribution of Aluminum Alloy LC4CS, Int. J. Fatigue, 2008, 30, p 172–177CrossRef
    34.Ch Yueliang, Y. Xiaohua, and Q. Haiqin, Study on Corrosion Damage Distribution Law of Aircraft Structure, Mater. Sci. Eng., 2002, 20(3), p 376–381
  • 作者单位:Shengbo Jiao (1)
    Chao Gao (1)
    Li Cheng (1)
    Xiaowei Li (2)
    Yu Feng (1)

    1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi’an, 710038, China
    2. XiDian University, Xi’an, 710038, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
The present work studied the very high-cycle fatigue (VHCF) test and fatigue properties of TC17 titanium alloy. The specimens for bending vibration were designed using the finite element method and the VHCF tests were conducted by using the ultrasonic fatigue testing system. The results indicated that there is no the fatigue limit for TC17 titanium alloy, and the S–N curve shows a continuously descending trend. The fatigue crack initiates at the specimen surface within the range of VHCF and the VHCF lives follow the log-normal distribution more closely.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700