Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen
详细信息    查看全文
  • 作者:Xiaoyan Quan ; Jianbin Zeng ; Lingzhen Ye ; Guang Chen ; Zhigang Han
  • 关键词:Barley ; Low N tolerance ; RNA ; Seq ; Genotypes ; Differentially expressed genes
  • 刊名:BMC Plant Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:3,308 KB
  • 参考文献:1.Horchani F, R’bia O, Hajri R, Aschi-Smiti A. Nitrogen nutrition and ammonium toxicity in higher plants. International. 2011;7(1):1–16.
    2.Marschner H, Rimmington G. Mineral nutrition of higher plants. Plant Cell Environ. 1988;11:147–8.
    3.Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA. 1999;96(4):1175–80.PubMedCentral CrossRef PubMed
    4.Crawford NM, Forde BG. Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book. 2002;1:e0011.PubMedCentral CrossRef PubMed
    5.Socolow RH. Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci. 1999;96(11):6001–8.PubMedCentral CrossRef PubMed
    6.McCullough DE, Girardin PH, Mihajlovic M, Aguilera A, Tollenaar M. Influence of N supply on development and dry matter accumulation of an old and a new maize hybrid. Can J Plant Sci. 1994;74(3):471–7.CrossRef
    7.Ding L, Wang KJ, Jiang GM, Biswas DK, Xu H, Li LF, et al. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot-London. 2005;96(5):925–30.CrossRef
    8.Chardon F, Noel V, Masclaux-Daubresse C. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot. 2012;63:3401–12.CrossRef PubMed
    9.Le Gouis J, Beghin D, Heumez E, Pluchard P. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron. 2000;12(3):163–73.CrossRef
    10.Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J. Genetic variability in nitrogen use efficiency of Spring Barley. Crop Sci. 2009;49(4):1259–69.CrossRef
    11.Namai S, Toriyama K, Fukuta Y. Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breeding Sci. 2009;59(3):269–76.CrossRef
    12.Presterl T, Seitz G, Landbeck M, Thiemt EM, Schmidt W, Geiger HH. Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci. 2003;43(4):1259–65.CrossRef
    13.Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, et al. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot. 2000;51(342):9–17.CrossRef PubMed
    14.Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L, et al. Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA. 2012;109(42):16969–73.PubMedCentral CrossRef PubMed
    15.Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol. 2013;54(12):1976–88.CrossRef PubMed
    16.Zhang M, Jin ZQ, Zhao J, Zhang GP, Wu FB. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul. 2015;75(2):567–74.CrossRef
    17.Zeng JB, He XY, Quan XY, Cai SG, Han Y, Nadira UA, et al. Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley. J Proteomics. 2015;126:1–11.CrossRef PubMed
    18.Yang LN, Hu HL, Zhu B, Jin XL, Wu FB, Zhang GP. Genotypic variations of N use efficiency in Tibetan wild and cultivated barleys. J Zhejiang Univ (Agric & Life Sci). 2014;40(2):155–64.
    19.Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18(9):1509–17.PubMedCentral CrossRef PubMed
    20.Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol. 2015;24(3):610–27.CrossRef PubMed
    21.Hübner S, Korol AB, Schmid KJ. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol. 2015;15(1):134.PubMedCentral CrossRef PubMed
    22.Yang SY, Hao DL, Song ZZ, Yang GZ, Wang L, Su YH. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene. 2015;555(2):305–17.CrossRef PubMed
    23.Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics. 2014;15(1):179.PubMedCentral CrossRef PubMed
    24.Zhao WC, Yang XY, Yu HJ, Jiang WJ, Sun N, Liu XR, et al. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. Plant and Cell Physiol. 2015;56(3):455–67.CrossRef
    25.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCentral CrossRef PubMed
    26.Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.PubMedCentral CrossRef PubMed
    27.Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat biotechnol. 2010;28(5):511–5.PubMedCentral CrossRef PubMed
    28.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.CrossRef PubMed
    29.Conesa A, Go¨tz S, Garcı´a-Go´mez JM, Terol J, Talo´n M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.CrossRef PubMed
    30.Zeng JB, He XY, Wu DZ, Zhu B, Cai SG, Nadira UA, et al. Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium. PLoS ONE. 2014;9(6):e100567.PubMedCentral CrossRef PubMed
    31.Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.PubMedCentral CrossRef PubMed
    32.Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241(4861):42–52.CrossRef PubMed
    33.Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell. 1992;70(3):375–87.CrossRef PubMed
    34.Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.PubMedCentral CrossRef PubMed
    35.Halliday KJ, Martinez-Garcia JF, Josse EM. Integration of light and auxin signaling. CSH Perspect Biol. 2009;1(6):a001586.
    36.Argueso CT, Ferreira FJ, Kieber JJ. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32(9):1147–60.CrossRef PubMed
    37.Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, et al. Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot. 2004;55(396):321–36.CrossRef PubMed
    38.Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006;11(12):610–7.CrossRef PubMed
    39.Crawford N, Glass A. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998;3(10):389–95.CrossRef
    40.Kiba T, Feria-Bourrellier AB, Lafouge F, Brehaut V, Miller A, Daniel-Vedele F, et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell. 2012;24(1):245–58.PubMedCentral CrossRef PubMed
    41.Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J. 2014;80(2):230–41.CrossRef PubMed
    42.Werf A, Kooijman A, Welschen R, Lambers H. Respiratory energy costs for the maintenance of biomass, for growth and for iron uptake in roots of Carex diandra and Carex acutiformis. Physiol Plant. 1988;72(3):483–91.CrossRef
    43.Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant. 2010;3(6):973–96.CrossRef PubMed
    44.Saeedipour S, Moradi F. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: impact of invertase activity on carbon metabolism during kernel development. J Agric Sci. 2011;3(2):32–44.
    45.Peng MS, Bi YM, Zhu T, Rothstein SJ. Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol. 2007;65(6):775–97.CrossRef PubMed
    46.Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, et al. R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci. 2009;106(30):12548–53.PubMedCentral CrossRef PubMed
    47.Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol. 2000;50(2):103–15.PubMed
    48.Sakakibara H. Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J Plant Res. 2003;116(3):253–7.CrossRef PubMed
    49.Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 2006;11(9):440–8.CrossRef PubMed
    50.Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA. 2011;108(45):18524–9.PubMedCentral CrossRef PubMed
    51.Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil. 2013;370(1–2):1–29.CrossRef
    52.Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics. 2007;8(1):281.PubMedCentral CrossRef PubMed
    53.Zheng D, Han X, An Y, Guo H, Xia X, Yin W. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ. 2013;36(7):1328–37.CrossRef PubMed
    54.Shin R, Berg RH, Schachtman DP. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 2005;46(8):1350–7.CrossRef PubMed
    55.Grossman A, Takahashi H. Macronutrient utilisation by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Biol. 2001;52(1):163–210.CrossRef
    56.Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.CrossRef PubMed
    57.Becana M, Matamoros MA, Udvardi M, Dalton DA. Recent insights into antioxidant defenses of legume root nodules. New Phytol. 2010;188(4):960–76.CrossRef PubMed
    58.Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol. 2010;61:291–315.CrossRef PubMed
    59.Cai H, Lu Y, Xie W, Zhu T, Lian X. Transcriptome response to nitrogen starvation in rice. J Biosci. 2012;37(4):731–47.CrossRef PubMed
    60.Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7(7):1085.PubMedCentral CrossRef PubMed
    61.Sanchez-Ballesta MT, Lafuente MT, Zacarias L, Zacarias L, Granell A. Involvement of phenylalanine ammonia-lyase in the response of Fortune mandarin fruits to cold temperature. Physiol Plant. 2000;108(4):382–9.CrossRef
    62.Diaz C, Saliba-Colombani V, Loudet O, Belluomo P, Moreau L, Daniel-Vedele F, et al. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol. 2006;47(1):74–83.CrossRef PubMed
    63.Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, et al. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot. 2008;59(11):2933–44.PubMedCentral CrossRef PubMed
    64.Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 2001;24(11):1189–97.CrossRef
    65.Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean MEJ, Crozier A. Occurrence of flavonols in tomatoes and tomato-based products. J AGR Food CHEM. 2000;48(7):2663–9.CrossRef
    66.Mehrtens F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005;138(2):1083–96.PubMedCentral CrossRef PubMed
    67.Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol. 2011;156(1):144–64.PubMedCentral CrossRef PubMed
  • 作者单位:Xiaoyan Quan (1)
    Jianbin Zeng (1)
    Lingzhen Ye (1)
    Guang Chen (1)
    Zhigang Han (1)
    Jawad Munawar Shah (1)
    Guoping Zhang (1)

    1. Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Nitrogen (N) is the most common limiting factor for crop productivity worldwide. An effective approach to solve N deficiency is to develop low N (LN) tolerant crop cultivars. Tibetan annual wild barley is well-known for its wide genetic diversity and high tolerance to poor soil fertility. Up to date, no study has been done to illustrate the mechanism of LN tolerance underlying the wild barley at transcriptional level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700