Free-Standing Reduced Graphene Oxide Paper with High Electrical Conductivity
详细信息    查看全文
  • 作者:Jie Gao ; Chengyan Liu ; Lei Miao ; Xiaoyang Wang ; Yu Chen
  • 关键词:Reduced graphene oxide ; free ; standing paper ; electrical conductivity ; Seebeck coefficient
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:1290-1295
  • 全文大小:1,143 KB
  • 参考文献:1.D.R. Dreyer, S.J. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRef
    2.Y. Chen, B. Zhang, G. Liu, X.D. Zhuang, and E.T. Kang, Chem. Soc. Rev. 41, 4688 (2012).CrossRef
    3.K.P. Loh, Q.L. Bao, P.K. Ang, and J.X. Yang, J. Mater. Chem. 20, 2277 (2010).CrossRef
    4.F. Chen and N.J. Tao, Acc. Chem. Res. 42, 429 (2009).CrossRef
    5.P.V. Kamat, J. Phys. Chem. Lett. 2, 242 (2011).CrossRef
    6.C.H. Xu, B.H. Xu, Y. Gu, Z.G. Xiong, J. Sun, and X.S. Zhao, Energy Environ. Sci. 6, 1388 (2013).CrossRef
    7.Y. Huang, J.J. Liang, and Y.S. Chen, Small 8, 1805 (2012).CrossRef
    8.Y. Du, S.Z. Shen, W.D. Yang, R. Donelson, K.F. Cai, and P.S. Casey, Synth. Met. 161, 2688 (2012).CrossRef
    9.T.O. Poehler and H.E. Katz, Energy Environ. Sci. 5, 8110 (2012).CrossRef
    10.G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRef
    11.Y. Du, S.Z. Shen, K.F. Cai, and P.S. Casey, Prog. Polym. Sci. 37, 820 (2012).CrossRef
    12.W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).CrossRef
    13.M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, and D.Z. Wang, Adv. Mater. 19, 1043 (2007).CrossRef
    14.S.H. Hong, E.S. Kim, W.Y. Kim, S.J. Jeon, S.C. Lim, and K.H. Kim, Phys. Chem. Chem. Phys. 14, 13527 (2012).CrossRef
    15.O.C. Compton and S.T. Nguyen, Small 6, 711 (2010).CrossRef
    16.X. Wang, L.J. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).CrossRef
    17.Y. Zhao, G.S. Tang, Z.Z. Yu, and J.S. Qi, Carbon 50, 3064 (2012).CrossRef
    18.K.L. Xu, G.M. Chen, and D. Qiu, J. Mater. Chem. A 1, 12395 (2013).CrossRef
    19.D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, and A. Slesarev, ACS Nano 4, 4806 (2010).CrossRef
    20.L. Mahmoud, Y. Abdul Samad, M. Alhawari, B. Mohammad, K. Liao, and M. Ismail, J. Electron. Mater. 44, 420 (2014).CrossRef
    21.S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, and H.M. Cheng, Carbon 48, 4466 (2010).CrossRef
    22.J.F. Cardenas, Carbon 46, 1327 (2008).CrossRef
    23.M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, and R. Saito, Carbon 40, 2043 (2002).CrossRef
    24.X.C. Dong, Y.M. Shi, Y. Zhao, D.M. Chen, J. Ye, and Y.G. Yao, Phys. Rev. Lett. 102, 135501 (2009).CrossRef
    25.X.W. Yang, J.W. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).CrossRef
    26.V. Štengl, Chem. Eur. J. 18, 14047 (2012).CrossRef
    27.D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, and G. Evmenenko, Nature 448, 457 (2007).CrossRef
    28.S. Gilje, S. Han, M.S. Wang, K.L. Wang, and R.B. Kaner, Nano Lett. 7, 3394 (2007).CrossRef
    29.C.Y. Liu, L. Miao, D.L. Hu, R. Huang, C.A.J. Fisher, and S. Tanemura, Phys. Rev. B 88, 205201 (2013).CrossRef
    30.Y.X. Li, Z. Pan, Y.Y. Fu, Y. Chen, Z.Y. Xie, and B. Zhang, J. Polym. Sci. A Polym. Chem. 50, 1663 (2012).CrossRef
  • 作者单位:Jie Gao (1) (2)
    Chengyan Liu (2)
    Lei Miao (2)
    Xiaoyang Wang (2)
    Yu Chen (1)

    1. Lab for Advanced Materials, Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
    2. Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
With high carrier mobility and low cost, reduced graphene oxide (RGO) shows bright prospects for use in the field of thermoelectric materials. To investigate the intrinsic thermoelectric properties of RGO sheets, we prepared RGO papers which were reduced by HBr solution for 5 min, 20 min, and 60 min, respectively. Thermogravimetry analysis (TGA) and Raman analysis showed that the conjugated carbon network of graphene oxide (GO) was restored during the reduction process and the thermal stability of the RGO papers was much better than that of GO paper. The RGO paper that was reduced for 60 min and then annealed in Ar/H2 atmosphere exhibited the highest electrical conductivity of 3.22 × 105 S/m at 160°C. As the reduction degree of the RGO paper deepens, the Seebeck coefficient gradually transforms from positive to negative, indicating that the conduction type of RGO paper can be controlled by regulating the reduction degree.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700