Size-dependent elastic properties of thin films: surface anisotropy and surface bonding
详细信息    查看全文
  • 作者:XiaoYe Zhou (1)
    Hang Ren (1)
    BaoLing Huang (1)
    TongYi Zhang (1)
  • 关键词:surface elasticity ; surface stress ; size ; dependent Young’s modulus ; Molecular dynamics simulations ; First ; principle calculations
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:57
  • 期:4
  • 页码:680-691
  • 全文大小:824 KB
  • 参考文献:1. Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B, 2004, 69(16): 165410 CrossRef
    2. Ni H, Li X. Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology, 2006, 17(14): 3591 CrossRef
    3. Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett, 2006, 96(7): 075505 CrossRef
    4. Nam C Y, Jaroenapibal P, Tham D, et al. Diameter-dependent electromechanical properties of GaN nanowires. Nano lett, 2006, 6(2): 153-58 CrossRef
    5. Miller Ronald E, Shenoy Vijay B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11(3): 139 CrossRef
    6. Shenoy Vijay B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B, 2005, 71(9): 094104 CrossRef
    7. Huang Z P, Wang J. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mechanica, 2006, 182(3-): 195-10 CrossRef
    8. Huang Z P, Sun L. Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mechanica, 2007, 190(1-): 151-63 CrossRef
    9. Dingreville R, Qu J, Mohammed C. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids, 2005, 53(8): 1827-854 CrossRef
    10. Dingreville R, Qu J. A semi-analytical method to compute surface elastic properties. Acta Mater, 2007, 55(1): 141-47 CrossRef
    11. Zhou L G, Huang H C. Are surfaces elastically softer or stiffer? Appl Phys Lett, 2004, 84(11): 1940-942 CrossRef
    12. Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects. Phys Rev B, 2005, 71(24): 241403 CrossRef
    13. Jona F. LEED crystallography. J Phys C, 1978, 11(21): 4271-306 CrossRef
    14. Huang W J, Sun R, Tao J, et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater, 2008, 7(4): 308-13 CrossRef
    15. Diao J, Gall K L, Dunn M. Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids, 2004, 52(9): 1935-962 CrossRef
    16. Punkkinen M P J, Kwon S K, Kollár J, et al. Compressive surface stress in magnetic transition metals. Phys Rev Lett, 2011, 106(5): 057202 CrossRef
    17. Zhang T Y, Luo M, Chan W K. Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] β-SiC nanowires. J Appl Phys, 2008, 103(10): 104308 CrossRef
    18. Chan W K, Zhang T Y. Mechanics analysis and atomistic simulations of nanobridge tests. J Appl Phys, 2010, 107(2): 023526 CrossRef
    19. Wang Z J, Liu C, Li Z G, et al. Size-dependent elastic properties of Au nanowires under bending and tension—Surfaces versus core nonlinearity. J Appl Phys, 2010, 108(8): 083506-83508 CrossRef
    20. Zhang T Y, Wang Z J, Chan W K. Eigenstress model for surface stress of solids. Phys Rev B, 2010, 81(19): 195427 CrossRef
    21. Zhang T Y, Ren H, Wang Z, et al. Surface eigen-displacement and surface Poisson’s ratios of solids. Acta Mater, 2011, 59(11): 4437-447 CrossRef
    22. Eberhart M. Charge-density-shear-moduli relationships in aluminum-lithium alloys. Phys Rev Lett, 2001, 87(20): 205503 CrossRef
    23. Jones T E, Sauer M A, Eberhart M E. First-principles study of the mode-1 fracture of Fe-TiX interfaces (X=C,N). Phys Rev B, 2008, 78(9): 092104 CrossRef
    24. Kioussis N, Herbranson M, Collins E, et al. Topology of electronic charge density and energetics of planar faults in fcc metals. Phys Rev Lett, 2002, 88(12): 125501 CrossRef
    25. Nakashima P N H, Smith A E, Etheridge J, et al. The bonding electron density in aluminum. Science, 2011, 331(6024): 1583-586 CrossRef
    26. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1-9 CrossRef
    27. Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett, 1983, 50(17): 1285-288 CrossRef
    28. Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B, 1984, 29(12): 6443-453 CrossRef
    29. Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23(10): 5048-079 CrossRef
    30. Bl?chl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953-7979 CrossRef
    31. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49(20): 14251-4269 CrossRef
    32. Bader R F W. Atoms in Molecules: a Quantum Theory. Oxford: Oxford University Press, 1990
  • 作者单位:XiaoYe Zhou (1)
    Hang Ren (1)
    BaoLing Huang (1)
    TongYi Zhang (1)

    1. Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • ISSN:1869-1900
文摘
Surface eigenstress and eigendisplacement models were used to investigate the surface stress, surface relaxation and surface elasticity of thin films with different surface orientations. Molecular dynamics simulations and first-principles calculations were conducted on face-centered cubic Au films with the focus on relaxation induced nonlinear initial deformation. The simulation results verify the theoretical predictions of the size dependency of surface energy density and surface stress, and the nonlinear scaling law of the size-dependent Young’s modulus of thin films. The mechanism of the size-dependent behaviors was further explored at the atomic bonding level with the charge density field. The Au atomic bonding at surfaces is enhanced compared to its interior counterpart and therefore the nominal Young’s modulus of the Au thin films is larger when the film thickness is smaller.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700