Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection
详细信息    查看全文
  • 作者:Zhulin Huang ; Guowen Meng ; Qing Huang ; Bin Chen ; Fei Zhou ; Xiaoye Hu…
  • 关键词:SERS ; Ag ; nanocube ; polyacrylic acid sodium salt ; trace detection
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:7
  • 期:8
  • 页码:1177-1187
  • 全文大小:2,155 KB
  • 参考文献:1. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. / Chem. Rev. 1999, / 99, 2957-975. CrossRef
    2. Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. / J. Am. Chem. Soc. 2006, / 128, 10304-0309. CrossRef
    3. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. / J. Am. Chem. Soc. 2003, / 125, 588-93. CrossRef
    4. Liu, T.-Y.; Tsai, K.-T.; Wang, H.-H.; Chen, Y.; Chen, Y.-H.; Chao, Y.-C.; Chang, H.-H.; Lin, C.-H.; Wang, J.-K.; Wang, Y.-L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. / Nat. Commun. 2011, / 2, 538. CrossRef
    5. Moskovits, M. Surface-enhanced spectroscopy. / Rev. Mod. Phys. 1985, / 57, 783-28. CrossRef
    6. Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; X, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. / Nano Res. 2013, / 6, 159-66. CrossRef
    7. Cho, W. J.; Kim, Y.; Kim, J. K. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. / ACS Nano 2012, / 6, 249-55. CrossRef
    8. Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. / Nat. Mater. 2013, / 12, 165-71. CrossRef
    9. Lim, D.-K.; Jeon, K.-S.; Kim, H. M.; Nam, J.-M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. / Nat. Mater. 2010, / 9, 60-7. CrossRef
    10. Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. / Nano Lett. 2009, / 9, 485-90. CrossRef
    11. Rodríguez-Lorenzo, L.; álvarez-Plubla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. / J. Am. Chem. Soc. 2009, / 131, 4616-618. CrossRef
    12. Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. / ACS Nano 2010, / 4, 5763-772. CrossRef
    13. Rycenga, M; Xia, X. X.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z.-Y.; Xia. Y. N. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. / Angew. Chem. Int. Ed. 2011, / 50, 5473-477. CrossRef
    14. Yap. F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. / ACS Nano 2012, / 6, 2056-070. CrossRef
    15. Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin, S. B. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. / Nano Lett. 2010, / 10, 2749-754. CrossRef
    16. Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. / Adv. Mater. 2010, / 22, 4136-139. CrossRef
    17. Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. / ACS Nano 2011, / 5, 4046-055. CrossRef
    18. Li, Z. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Zhang, Z.; Li, X. D. Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates. / Chem. Eur. J. 2012, / 18, 14948-4953. CrossRef
    19. Zhu, C. H; Meng, G. W.; Huang, Q.; Zhang, Z.; Xu, Q. L.; Liu, G. Q.; Huang, Z. L.; Chu, Z. Q. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. / Chem. Commun. 2011, / 47, 2709-711. CrossRef
    20. Jones, C. L.; Bantz, K. C.; Haynes, C. L. Partition layer -modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. / Anal. Bioanal. Chem. 2009, / 394, 303-11. CrossRef
    21. Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Traps and cages for universal SERS detection. / Chem. Soc. Rev. 2012, / 41, 43-1. CrossRef
    22. Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. / J. Raman Spectrosc. 2013, / 44, 240-46. CrossRef
    23. Guerrini, L.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate functionalized Ag nanoparticles by surface-enhanced Raman scattering. / Anal. Chem. 2009, / 81, 953-60. CrossRef
    24. Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. / Science 2002, / 297, 1536-540. CrossRef
    25. álvarez-Puebla, R. A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. / Angew. Chem. Int. Ed. 2009, / 48, 138-43. CrossRef
    26. Gehan. H.; Fillaud, L.; Chehimi, M. M.; Aubard, J.; Hohenau, A.; Felidj, N.; Mangeney, C. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. / ACS Nano 2010, / 4, 6491-500. CrossRef
    27. Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte M. A.; álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. / Angew. Chem. Int. Ed. 2009, / 48, 5326-329. CrossRef
    28. Contreras-Cáceres, R.; Abalde-Cela, S.; Guardia-Girós, P.; Fernández-Barbero, A.; Pérez-Juste, J.; álvarez-Puebla, R. A.; Liz-Marzán, L. M. Multifunctional microgel magnetic/optical traps for SERS ultradetection. / Langmuir 2011, / 27, 4520-525. CrossRef
    29. Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. / Nat. Protoc. 2007, / 9, 2182-190. CrossRef
    30. Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P. D. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. / Nano Lett. 2008, / 8, 4033-038. CrossRef
    31. Weaver, J. H.; Frederikse, H. P. R. Optical properties of selected elements. In / CRC Handbook of Chemistry and Physics. Lide, D. R., Ed; Taylor & Francis: New York, 2005; 134-35.
    32. Liu, M. Z.; Guo, T. H. Preparation and swelling properties of crosslinked sodium polyacrylate. / J. Appl. Polym. Sci. 2001, / 82, 1515-520. CrossRef
    33. Biswas, A.; Aktas, O. C.; Schürmann, U.; Saeed, U.; Zaporojtchenko, V.; Faupel, F.; Strunskus, T. Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. / Appl. Phys. Lett. 2004, / 84, 2655-657. CrossRef
    34. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. / J. Phys. Chem. C 2007, / 111, 13794-3803. CrossRef
    35. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). / Phys. Rev. Lett. 1997, / 78, 1667-670. CrossRef
    36. Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. / Phys. Chem. Chem. Phys. 2008, / 10, 6079-089. CrossRef
    37. Liu, H. W.; Zhang, L.; Lang, X. Y.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. / Sci. Rep. 2011, / 1, 112.
    38. Cheng, Y.; Dong, Y. Y.; Wu, J. H.; Yang, X. R.; Bai, H.; Zheng, H. Y.; Ren, D. M.; Zou, Y. D.; Li, M. Screening melamine adulterant in milk powder with laser Raman spectrometry. / J. Food Compos. Anal. 2010, / 23, 199-02. CrossRef
    39. Jiménez-Vázquez, H. A.; Tamariz, J.; James Cross, R. Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. / J. Phys. Chem. A 2001, / 105, 1315-319. CrossRef
  • 作者单位:Zhulin Huang (1)
    Guowen Meng (1) (2)
    Qing Huang (3)
    Bin Chen (1)
    Fei Zhou (1)
    Xiaoye Hu (1)
    Yiwu Qian (1)
    Haibin Tang (1)
    Fangming Han (1)
    Zhaoqin Chu (1)

    1. Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031, China
    2. University of Science and Technology of China, Hefei, 230026, China
    3. Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
  • ISSN:1998-0000
文摘
Surface-enhanced Raman spectroscopy (SERS) is a fast analytical technique for trace chemicals; however, it requires the active SERS-substrates to adsorb analytes, thus limiting target species to those with the desired affinity for substrates. Here we present networked polyacrylic acid sodium salt (PAAS) film entrapped Ag-nanocubes (denoted as Ag-nanocubes@PAAS) as an effective SERS-substrate for analytes with and without high affinity. Once the analyte aqueous solution is cast on the dry Ag-nanocubes@PAAS substrate, the bibulous PAAS becomes swollen forcing the Ag-nanocubes loose, while the analytes diffuse in the interstices among the Ag-nanocubes. When dried, the PAAS shrinks and pulls the Ag-nanocubes back to their previous aggregated state, while the PAAS network “detains-the analytes in the small gaps between the Ag-nanocubes for SERS detection. The strategy has been proven effective for not only singleanalytes but also multi-analytes without strong affinity for Ag, showing its potential in SERS-based simultaneous multi-analyte detection of both adsorbable and non-adsorbable pollutants in the environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700