The role of ERK and JNK signaling in connective tissue growth factor induced extracellular matrix protein production and scar formation
详细信息    查看全文
  • 作者:Xiaolong Hu (1)
    Hongtao Wang (1)
    Jiaqi Liu (1)
    Xiaobing Fang (1)
    Ke Tao (1)
    Yaojun Wang (1)
    Na Li (1)
    Jihong Shi (1)
    Yunchuan Wang (1)
    Peng Ji (1)
    Weixia Cai (1)
    Xiaozhi Bai (1)
    Xiongxiang Zhu (1)
    Juntao Han (1)
    Dahai Hu (1)
  • 关键词:Hypertrophic scar ; Extracellular signal ; regulated kinase ; c ; Jun N ; terminal kinase ; Connective tissue growth factor ; Scar formation
  • 刊名:Archives of Dermatological Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:305
  • 期:5
  • 页码:433-445
  • 全文大小:2547KB
  • 参考文献:1. Bayat A, McGrouther DA, Ferguson MW (2003) Skin scarring. BMJ 326:88-2 CrossRef
    2. Bonniaud P, Margetts PJ, Kolb M, Haberberger T, Kelly M, Robertson J, Gauldie J (2003) Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Respir Crit Care Med 168(7):770-78 CrossRef
    3. Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconst Aesthet Surg 61:1049-058 CrossRef
    4. Browne JG, Ho SL, Kane R, Oliver N, Clark AF, O’Brien CJ, Crean JK (2011) Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 52:3660-666 CrossRef
    5. Chung CW, Zhang QL, Qiao LY (2010) Endogenous nerve growth factor regulates collagen expression and bladder hypertrophy through Akt and MAPK pathways during cystitis. J Biol Chem 285:4206-212 CrossRef
    6. Diao JS, Xia WS, Yi CG, Wang YM, Li B, Xia W, Liu B, Guo SZ, Sun XD (2011) Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res 303:573-80 CrossRef
    7. Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR (1999) Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 13:1774-786
    8. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17:113-25 CrossRef
    9. Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176:709-18 CrossRef
    10. Hayata N, Fujio Y, Yamamoto Y, Iwakura T, Obana M, Takai M, Mohri T, Nonen S, Maeda M, Azuma J (2008) Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochem Biophys Res Commun 370:274-78 CrossRef
    11. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779-791 CrossRef
    12. Kryger ZB, Sisco M, Roy NK, Lu L, Rosenberg D, Mustoe TA (2007) Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring. J Am Coll Surg 205:78-8 CrossRef
    13. Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803-810 CrossRef
    14. Liu J, Wang Y, Pan Q, Su Y, Zhang Z, Han J, Zhu X, Tang C, Hu D (2012) Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to- myofibroblast transition. J Dermatol Sci 65:38-9 CrossRef
    15. Liu S, Leask A (2011) CCN2 is not required for skin development. J Cell Commun Signal 5:179-82 CrossRef
    16. Liu S, Shi-wen X, Abraham DJ, Leask A (2011) CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum 63:239-46 CrossRef
    17. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol 181:153-59 CrossRef
    18. Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276-92 CrossRef
    19. Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT (2009) CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci 50:1903-910 CrossRef
    20. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62-4 CrossRef
    21. Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142-155 CrossRef
    22. Saito M, Yamazaki M, Maeda T, Matsumura H, Setoguchi Y, Tsuboi R (2012) Pirfenidone suppresses keloid fibroblast-embedded collagen gel contraction. Arch Dermatol Res 304:217-22 CrossRef
    23. Shi JH, Hu DH, Zhang ZF, Bai XZ, Wang HT, Zhu XX, Su YJ, Tang CW (2012) Reduced expression of microtubule-associated protein 1 light chain 3 in hypertrophic scars. Arch Dermatol Res 304:209-15 CrossRef
    24. Shi-wen X, Stanton LA, Kennedy L, Pala D, Chen Y, Howat SL, Renzoni EA, Carter DE, Bou-Gharios G, Stratton RJ, Pearson JD, Beier F, Lyons KM, Black CM, Abraham DJ, Leask A (2006) CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem 281:10715-0726 CrossRef
    25. Sisco M, Kryger ZB, O’Shaughnessy KD, Kim PS, Schultz GS, Ding XZ, Roy NK, Dean NM, Mustoe TA (2008) Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 16:661-73 CrossRef
    26. Tan TW, Lai CH, Huang CY, Yang WH, Chen HT, Hsu HC, Fong YC, Tang CH (2009) CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem 107:345-56 CrossRef
    27. Tang B, Zhu B, Liang Y, Bi L, Hu Z, Chen B, Zhang K, Zhu J (2011) Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Arch Dermatol Res 303:563-72 CrossRef
    28. Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19-4 CrossRef
    29. Wahab NA, Weston BS, Mason RM (2005) Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 16:340-51 CrossRef
    30. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D (2011) Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4:4 CrossRef
    31. Yosimichi G, Kubota S, Nishida T, Kondo S, Yanagita T, Nakao K, Takano-Yamamoto T, Takigawa M (2006) Roles of PKC, PI3K and JNK in multiple transduction of CCN2/CTGF signals in chondrocytes. Bone 38:853-63 CrossRef
    32. Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M (2001) CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem 268:6058-065 CrossRef
    33. Zhang H, Ran X, Hu CL, Qin LP, Lu Y, Peng C (2012) Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model. PLoS ONE 7:e31157 CrossRef
    34. Zhang ZF, Zhang YG, Hu DH, Shi JH, Liu JQ, Zhao ZT, Wang HT, Bai XZ, Cai WX, Zhu HY, Tang CW (2011) Smad interacting protein 1 as a regulator of skin fibrosis in pathological scars. Burns 37:665-72 CrossRef
  • 作者单位:Xiaolong Hu (1)
    Hongtao Wang (1)
    Jiaqi Liu (1)
    Xiaobing Fang (1)
    Ke Tao (1)
    Yaojun Wang (1)
    Na Li (1)
    Jihong Shi (1)
    Yunchuan Wang (1)
    Peng Ji (1)
    Weixia Cai (1)
    Xiaozhi Bai (1)
    Xiongxiang Zhu (1)
    Juntao Han (1)
    Dahai Hu (1)

    1. Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi’an, 710032, Shaanxi, China
  • ISSN:1432-069X
文摘
CCN2 plays an important role in the pathogenesis of hypertrophic scars (HTSs). Although CCN2 is involved in many fibroproliferative events, the CCN2 induction signaling pathway in HTSs is yet to be elucidated. Here, we first investigated the effect of the mitogen-activated protein kinases (MAPKs) on CCN2-induced α-smooth muscle actin (α-SMA) and collagen I expression in human HTS fibroblasts (HTSFs). Then, we established HTSs in a rabbit ear model and determined the effect of MAPKs on the pathogenesis of HTSs. MAPK pathways were activated by CCN2 in HTSFs. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors significantly inhibited CCN2-induced expression of α-SMA and collagen I in HTSFs. In the rabbit ear model of the HTS, JNK and ERK inhibitors significantly improved the architecture of the rabbit ear scar and reduced scar formation on the rabbit ear. Our results indicate that ERK and JNK mediate collagen I expression and scarring of the rabbit ear, and may be considered for specific drug therapy targets for HTSs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700