Variability of winter extreme precipitation in Southeast China: contributions of SST anomalies
详细信息    查看全文
  • 作者:Ling Zhang ; Frank Sielmann ; Klaus Fraedrich ; Xiuhua Zhu ; Xiefei Zhi
  • 关键词:Extreme winter precipitation ; Interannual variability ; El Niño ; IOD
  • 刊名:Climate Dynamics
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:45
  • 期:9-10
  • 页码:2557-2570
  • 全文大小:1,907 KB
  • 参考文献:Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 26:3001–3004
    Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and Indian Ocean dipole. J Meteorol Soc Jpn 8(1):41–56CrossRef
    Chou C et al (2009) El Niño impacts on precipitation in the western North Pacific-East Asian sector. J Clim 22:2039–2057CrossRef
    Clarke AJ, Liu X (1993) Observations and dynamics of the semi-annual and annual sea levels near the equatorial Indian Ocean boundary. J Phys Oceanogr 23:386–399CrossRef
    Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972CrossRef
    Czaja A, Frankignoul C (2002) Observed impact of North Atlantic SST anomalies on the North Atlantic oscillation. J Clim 15:606–623CrossRef
    Dahms E, Borth H, Lunkeit F, Fraedrich K (2011) ITCZ splitting and the influence of large-scale eddy fields on the tropical mean state. J Meterol Soc Jpn 89(5):399–411CrossRef
    Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRef
    Ding RQ, Ha K, Li JP (2010) Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Clim Dyn 34:1059–1071CrossRef
    Dong WJ (2007) China meteorological disaster yearbook. Meteorology Press, Beijing, pp 61–68 (in Chinese)
    Feng J, Li J (2011) Influence of El Niño Modoki on spring rainfall over South China. J Geophys Res 116:D13102. doi:10.​1029/​2010JD015160 CrossRef
    Fraedrich K (2012) A suite of user-friendly global climate models: hysteresis experiments. Eur Phys J Plus 127:53. doi:10.​1140/​epjp/​i2012-12053-7
    Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005) The planet simulator: towards a user friendly model. Meteorol Z 14:299–304CrossRef
    Frankignoul C, Kestenare (2005) Observed Atlantic SST anomaly impact on the NAO: an update. J Clim 18:4089–4094CrossRef
    Frankignoul C, Chouaib N, Liu ZY (2011) Estimating the observed atmospheric response to SST anomalies: maximum covariance analysis, generalized equilibrium feedback assessment, and maximum response estimation. J Clim 24:2523–2539CrossRef
    Gershgorin B, Majda A (2010) A test model for fluctuation-dissipation theorems with time-periodic statistics. Physica D 239:1741–1757CrossRef
    Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462CrossRef
    Gong DY, Ho CH (2002) The Siberian high and climate change over middle to high latitude Asia. Theor Appl Climatol 72:1–9CrossRef
    Gong DY, Wang SW (1999) Long-term variability of the Siberian high and the possible influence of global warming. Acta Geogr Sin 54(2):125–133 (in Chinese)
    Gritsun A, Branstator G (2007) Climate response using a three-dimensional operator based on the fluctutation-dissipation theorem. J Atmos Sci 64:2558–2575CrossRef
    Gritsun A, Branstator G, Majda A (2008) Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem. J Atmos Sci 65:2824–2841CrossRef
    Guan Z, Yamagata T (2003) The unusual summer of 1994 in EastAsia: IOD teleconnections. Geophys Res Lett 30:1544–1547CrossRef
    Huang RH, Zhou LT, Chen W (2003) The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv Atmos Sci 20:55–69CrossRef
    Kim JW, Yeh SW, Chang EC (2013) Combined effect of El Niño-Southern oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Clim Dyn. doi:10.​1007/​s00382-013-1730-z
    Kumar A, Jha B, Wang H (2013) Attribution of SST variability in global oceans and the role of ENSO. Clim Dyn. doi:10.​1007/​s00382-013-1865-y
    Li CY, Mu MQ (2001) The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv Atmos Sci 18:831–843
    Li CY, Zhou W, Wang X (2006) Decadal/interdecadal variations of ocean temperature and its impacts on climate. Adv Atmos Sci 23:964–981CrossRef
    Li JP et al (2010) Can global warming strengthen the East Asian summer monsoon? J Clim 23:6696–6705CrossRef
    McBride JL, Nicholls N (1983) Seasonal relationships betwenn Australian rainfall and the southern oscillation. Mon Weather Rev 111:1998–2004CrossRef
    Meyers G (1996) Variations of Indonesian through flow and the El Nino-Southern oscillation. J Geophys Res 101:12255–12263CrossRef
    Phlips PJ, Gill AE (1987) An analytic model of the heat-induced tropical circulation in the presence of a mean wind. Q J R Meteorol Soc 113:213–236. doi:10.​1002/​qj.​49711347513 CrossRef
    Preisendorfer RW, Barnett TP (1983) Numercal model-reality intercomparison tests using small-sample statistics. J Atmos Sci 40:1884–1896CrossRef
    Rao AS, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep Sea Res ΙΙ 49:1549–1572CrossRef
    Rasmusson EM, Wallace JM (1983) Meteorological aspects of El Nino/southern oscillation. Science 222:1195–1202CrossRef
    Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363
    Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice sheets on global ocean circulation. J Clim 24:2814–2829CrossRef
    Shukla J, Paolino DA (1983) The Southern oscillation and long range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837CrossRef
    Sun C, Yang S (2012) Persistent severe drought in Southern China during winter–spring 2011: large-scale circulation patterns and possible impacting factors. J Geophys Res 117:D10112. doi:10.​1029/​2012JD017500 CrossRef
    Takaya K, Nakamura H (2013) Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves. J Clim 26:9445–9461CrossRef
    Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto S (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi:10.​1029/​2008GL036801 CrossRef
    Vinayachandran PN, Saji NH, Yamagata T (1999) Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophys Res Lett 11:1613–1616CrossRef
    von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, 342 pp
    Walker GT (1923) Correlation in seasonal variations of weather. Part VIII: a preliminary study of world weather. Mem Indian Meteor Dept 24:75–131
    Walker GT (1924) Correlation in seasonal variations of weather. Part IX: a further study of world weather. Mem Indian Meteor Dept 24:275–332
    Wang B, Zhang Q (2002) Pacific-East Asian teleconnection. Part: How the Philippine sea anomalous anticyclone is established during El Nino development. J Clim 15:3252–3265CrossRef
    Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRef
    Wang W, Chen X, Shi P, van Gelder PHAJM (2008) Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River basin in Southern China. Hydrol Earth Syst Sci 12:207–221CrossRef
    Wang X, Wang DX, Zhou W, Li CY (2012) Interdecadal modulation of the influence of La Niña events on Mei-Yu rainfall over the Yangtze river valley. Adv Atmos Sci 29(1):157–168CrossRef
    Wang B, Xiang B, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci USA 110(8):2718–2722CrossRef
    Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia and the processes. J Clim 16:3741–3757
    Xie SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRef
    Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR., Rao SA (2013) Coupled Ocean-atmosphere variability in the tropical Indian Ocean, in earth’s climate. In: Wang C, Xie SP, Carton JA (eds), American Geophysical Union, Washington. doi: 10.​1029/​147GM12
    Yamagata T, Behera SK, Rao SA, Guan Z, Ashok K, Saji HN (2003) Comments on “dipoles, temperature gradient, and tropical climate anomalies”. Bull Am Meteorol Soc 84:1418–1422CrossRef
    Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7722CrossRef
    Yuan Y, Yang H, Zhou W, Li C (2008) Influences of the Indian Ocean dipole on the Asian 5 summer monsoon in the following year. Int J Climatol 28:1849–1859CrossRef
    Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim Change 2:851–870CrossRef
    Zhang L, Zhu XH, Fraedrich K, Sielmann F, Zhi XF (2014a) Interdecadal variability of winter precipitation in Southeast China. Clim Dyn. doi:10.​1007/​s00382-014-2048-1
    Zhang L, Fraedrich K, Zhu XH, Sielmann F, Zhi XF (2014b) Interannual variability of winter precipitation in Southeast China. Theor Appl Climatol. doi:10.​1007/​s00704-014-1111-5
    Zhi XF (2001) Interannual variability of the Indian summer monsoon and its modeling with a zonally symmetric 2D model. Shaker Verlag, Germany
    Zhou LT, Wu RG (2010) Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China. J Geophys Res 115:D02107. doi:10.​1029/​2009JD012502
    Zhou LT et al (2009) Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv Atmos Sci. doi:10.​1007/​s00376-009-9102-7
  • 作者单位:Ling Zhang (1) (2)
    Frank Sielmann (3)
    Klaus Fraedrich (1) (2)
    Xiuhua Zhu (4)
    Xiefei Zhi (1)

    1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, KLME, Nanjing University of Information Science and Technology, Nanjing, China
    2. Max Planck Institute for Meteorology, Hamburg, Germany
    3. Meteorological Institute, Hamburg University, Hamburg, Germany
    4. KlimaCampus, Hamburg University, Hamburg, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
Tropical SST anomalies are among the largest drivers of circulation regime changes on interannual time scales due to its characteristic heat capacity decay time scales. The circulation anomalies associated with extreme precipitation and the corresponding atmospheric response to SST anomalies are derived from ECMWF ERA-Interim reanalysis data by employing composite analysis and lagged maximum covariance analysis. Our results show that interannual variability of extreme winter precipitation in Southeast China is in close accordance with the interannual variability of total winter precipitation. Both are associated with similar abnormal circulation regimes, but for extreme precipitation events the circulation anomalies and moisture transport channels are significantly intensified. Two main moisture transport channels are captured: one extends from the North Indian Ocean through India and the Bay of Bengal to South China, and the other from the West Pacific Ocean through Maritime Continent and South China Sea towards South China, which are related to the preceding autumn SST patterns, El Niño and the Indian Ocean dipole (IOD), respectively. El Niño (La Niña) SST anomalies induce anomalous anticyclonic (cyclonic) circulation over Philippine Sea, which is favorable (unfavorable) to warm and humid air transport to South China from the tropical West Pacific by southwesterly (northeasterly) anomalies. Under these circulations, northeasterlies of East Asian Winter Monsoon are weakened (strengthened) resulting in extreme precipitation to be more (less) frequent in Southeast China. During the positive (negative) IOD phase, abundant (reduced) moisture transport to South China from tropical regions through India and Bay of Bengal is observed due to weakened (strengthened) Walker circulations and abnormal anticyclonic (cyclonic) circulation over India, leading to a higher (lower) likelihood for extreme precipitation events in Southeast China. The underlying physical mechanisms can be explained by a simplified one-dimensional vorticity equation (Sverdrup balance).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700