In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS
详细信息    查看全文
  • 作者:ZhiChao Liu (1) (2)
    FuYuan Wu (1)
    ChunLi Guo (3)
    ZiFu Zhao (4)
    JinHui Yang (1)
    JinFeng Sun (1) (2)
  • 关键词:xenotime ; laser ablation (LA) ; ICP ; MS ; U ; Pb dating
  • 刊名:Chinese Science Bulletin
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:56
  • 期:27
  • 页码:2948-2956
  • 全文大小:773KB
  • 参考文献:1. Heaman L M, LeCheminant A N. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol, 1993, 110: 95-26 CrossRef
    2. Chamberlain K R, Schmitt A K, Swapp S M, et al. / In situ U-Pb SIMS (IN-SIMS) micro-baddeleyite daing of mafic rocks: Method with examples. Precambrian Res, 2010, 183: 379-87 CrossRef
    3. Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chem Geol, 2010, 269: 396-05 CrossRef
    4. Wu F Y, Yang Y H, Mitchell R H, et al. / In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos, 2010, 115: 205-22 CrossRef
    5. McNaughton N J, Rasmussen B, Fletcher I R. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks. Science, 1999, 285: 78-0 CrossRef
    6. Fletcher I R, Rasmussen B, McNaughton N J. SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Aust J Earth Sci, 2000, 47: 845-59 CrossRef
    7. England G L, Rasmussen B, McNaughton N J, et al. SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the Archaean Witwatersrand Supergroup of South Africa. Terra Nova, 2001, 13: 360-67 CrossRef
    8. Vallini D, Rasmussen B, Krape? B, et al. Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually coarse xenotime cement in phosphatic sandstone. Geology, 2002, 30: 1083-086 CrossRef
    9. Fletcher I R, McNaughton N J, Aleinikoff J, et al. Improved calibration procedures and new standards for U-Pb and Th-Pb dating of Phanerozoic xenotime by ion microprobe. Chem Geol, 2004, 209: 295-14 CrossRef
    10. Kositcin N, McNaughton N J, Griffin B J, et al. Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta, 2003, 67: 709-31 CrossRef
    11. Rasmussen B, Fletcher I R, Bengtson S, et al. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precambrain Res, 2004, 133: 329-37 CrossRef
    12. Tallarico F H B, McNaughton N J, Groves D I, et al. Geological and SHRIMP II U-Pb constraints on the age and origin of the Breves Cu-Au-(W-Bi-Sn) deposit, Carajis, Brazil. Miner Deposita, 2004, 39: 68-6 CrossRef
    13. Rasmussen B, Fletcher I R, Sheppard S. Isotopic dating of the migration of a low-grade metamorphic front during orogenesis. Geology, 2005, 33: 773-76 CrossRef
    14. Mello E F, Xavier R P, McNaughton N J, et al. Age constraints on felsic intrusions, metamorphism and gold mineralisation in the Palaeoproterozoic Rio Itapicuru greenstone belt, NE Bahia State, Brazil. Miner Deposita, 2006, 40: 849-66 CrossRef
    15. Rasmussen B, Fletcher I R, Muhling J R, et al. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett, 2007, 258: 249-59 CrossRef
    16. Rasmussen B, Fletcher I R, Muhling J R. / In situ U-Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochim Cosmochim Acta, 2007, 71: 670-90 CrossRef
    17. Rasmussen B, Fletcher I R, Muhling J R, et al. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa: Constraints from / in situ SHRIMP U-Pb dating of monazite and xenotime. Geology, 2007, 35: 931-34 CrossRef
    18. Sarma D S, McNaughton N J, Fletcher I R, et al. Timing of gold mineralization in the hutti gold deposit, Dharwar Craton, South India. Econ Geol, 2008, 103: 1715-727 CrossRef
    19. Rasmussen B, Mueller A G, Fletcher I R. Zirconolite and xenotime U-Pb age constraints on the emplacement of the Golden Mile Dolerite sill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Contrib Mineral Petr, 2009, 157: 559-72 CrossRef
    20. Rasmussen B, Fletcher I R, Muhling J R, et al. / In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Pbrcambrian Res, 2010, 180: 26-6 CrossRef
    21. Suzuki K, Adachi M. Precambrian provenance and Silurian metamorphism of the tsubonosawa paragneiss in the South Kitakami Terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J, 1991, 25: 357-76
    22. Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: Evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Res, 2002, 114: 249-75 CrossRef
    23. Salier B P, Groves D I, McNaughton N J, et al. Geochronological and stable isotope evidence for widespread orogenic gold mineralization from a deep-seated fluid source at ca. 2.65 Ga in the Laverton gold province, Western Australia. Econ Geol, 2005, 100: 1363-388 CrossRef
    24. Cocherie A, Legendre O. Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos, 2007, 93: 288-09 CrossRef
    25. Hetherington C J, Jercinovic M J, Williams M L, et al. Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis. Chem Geol, 2008, 254: 133-47 CrossRef
    26. Becccaletto L, Bonev N, Bosch D, et al. Record of a Palaeogene syn-collisional extension in the north Aegean region: Evidence from the Kemer micaschists (NW Turkey). Geol Mag, 2007, 144: 393-00 CrossRef
    27. Kl?tzli E, Kl?tzli U, Kosler J. A possible laser ablation xenotime U-Pb age standard: Reproducibility and accuracy. Geochim Cosmochim Acta, 2007, 71: 495
    28. Wall F, Niku-Paavola V N, Storey C, et al. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Can Mineral, 2008, 46: 861-77 CrossRef
    29. Xie L W, Zhang Y B, Zhang H H, et al. / In situ simultaneous determination of trace elements, and Lu-Hf isotopes in zircon and baddeleyite. Chinese Sci Bull, 2008, 53: 1565-573 CrossRef
    30. Williams I S, Hergt J M. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead J D, Hergt J M, Noble W P, eds. Beyond 2000: New Frontiers in Isotope Geoscience. Abstracts and Proceedings, Lorne, Australia. Melbourne: University of Melbourne, 2000. 185-88
    31. Zhang H F, Harris N, Parrish R, et al. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications. Chinese Sci Bull, 2004, 49: 2087-092 CrossRef
    32. Li Y D, Sheng J F, Le BEL L, et al. Evidence for the lower continental crustal source of the Xihuashan granite. Acta Geol Sin, 1986, 60: 47-4
    33. Shen W Z, Xu S J, Wang Y X, et al. Study on the Nd-Sr isotope of the Xihuashan granite. Chinese Sci Bull, 39: 653-57
    34. McKee E H, Rytuba J J, Xu K Q. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi Province, South China. Econ Geol, 1987, 82: 218-23 CrossRef
    35. Li H Q, Liu J Q, Wei L. The Chronology of Inclusions From Hydrothermal Deposits and Its Geological Application (in Chinese). Beijing: Geological Publishing House, 1993. 956-62
    36. Yang J H, Chen X Y, Wang X D. Geochronological and geochemical studies of the Dangpin granite and tungsten mineralization, Jiangxi Province (in Chinese). Acta Mineral Sin, 2009, 29(Suppl): 339-40
    37. Wang R C, Fontan F, Chen X M, et al. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record of magmatic and hydrothermal stages of evolution. Can Mineral, 2003, 41: 727-48 CrossRef
    38. Crowley J L, Waters D J, Searle M P, et al. Pleistocene melting and rapid exhumation of the Nanga Parbat massif, Pakistan: Age and P-T conditions of accessory mineral growth in migmatite and leucogranite. Earth Planet Sci Lett, 2009, 288: 408-20 CrossRef
    39. Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol, 1973, 40: 259-74 CrossRef
    40. Cherniak D J. Pb and rare earth element diffusion in xenotime. Lithos, 2006, 88: 1-4 CrossRef
    41. Zhao Z F, Zheng Y F. Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: Empirical relationships to crystal chemistry. Am Mineral, 2007, 92: 289-08 CrossRef
    42. Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683-87 CrossRef
    43. Th?ni M, Miller Ch, Zanetti A, et al. Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol, 2008, 254: 216-37 CrossRef
    44. Andrehs G, Heinrich W. Experimental determination of REE distributions between monazite and xenotime: Potential for temperature-calibrated geochronology. Chem Geol, 1998, 149: 83-6 CrossRef
    45. Aleinikoff J N, Grauch R I. U-Pb geochronologic constraints on the origin of a unique monazite-xenotime gneiss, Hudson Highlands, New York. Am J Sci, 1990, 290: 522-46 CrossRef
    46. Hawkins D P, Bowring S A. U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol, 1997, 127: 87-03 CrossRef
    47. Schaltegger U, Pettke T, Audétat A, et al. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part I: Crystallization of zircon and REE-phosphates over three million years-A geochemical and U-Pb geochronological study. Chem Geol, 2005, 220: 215-35 CrossRef
    48. Salier B P, Grovest D I, McNaughton N J, et al. Geochronological and stable isotope evidence for widespread orogenic gold mineralization from a deep-seated fluid Source at ca. 2.65 Ga in the Laverton Gold Province, Western Australia. Econ Geol, 2005, 100: 1363-388 CrossRef
    49. Stern R A, Rayner N. Ages of several xenotime megacrysts by ID-TIMS: potential reference materials for ion microprobe U-Pb geochronology. Radiogenic Age and Isotopic Studies: Report 16, Geological Survey of Canada, Current Research 2003-F1, 2003. 1-
    50. Schoene B, Crowley J L, Condon D J, et al. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim Cosmochim Acta, 2006, 70: 426-45 CrossRef
    51. Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chem Geol, 2000, 164: 281-01 CrossRef
  • 作者单位:ZhiChao Liu (1) (2)
    FuYuan Wu (1)
    ChunLi Guo (3)
    ZiFu Zhao (4)
    JinHui Yang (1)
    JinFeng Sun (1) (2)

    1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
    3. Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing, 100037, China
    4. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
  • ISSN:1861-9541
文摘
Xenotime is an ideal mineral for U-Th-Pb isotopic dating because of its relatively high U and Th contents, but typically low concentration of common Pb. These characteristics, and the fact that it is widespread throughout various types of rocks, suggest that the U-Th-Pb dating of xenotime has broad applications. Studies of U-Pb dating on xenotime by ion microprobe (such as SHRIMP) have increased in recent years, whereas studies by laser ablation (LA)-ICP-MS are still rare. In this study, we developed a technique for U-Pb dating of xenotime using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS. To evaluate the reliability of our method, a xenotime standard, BS-1, was analyzed and calibrated against another xenotime standard, MG-1. The weighted mean 206Pb/238U ages of 510.1 ± 5.2 Ma (2 σ, n = 21), 509.8 ± 4.3 Ma (2 σ, n = 21) and 510.0 ± 4.6 Ma (2 σ, n = 21) were obtained using beam diameters of 16, 24 and 32 μm, respectively. These ages are identical to those determined by ID-TIMS method (weighted mean 206Pb/238U age of 508.8 ± 1.4 Ma), which supports the reliability of our LA-ICP-MS method. We also analyzed xenotimes in leucogranites from South Tibet and granites from Xihuashan in southern China, and obtained accurate and precise ages. Nevertheless, we observed systematic differences in Pb/U fractionation among xenotime, monazite and zircon. The matrix-effect resulted in either under-correction or over-correction of fractionation, and thus led to inaccurate ages. Thus, a matrix-matched material is required for U-Pb dating of xenotime by LA-ICP-MS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700