Simple method for synthesizing few-layer graphene as cathodes in surface-enabled lithium ion-exchanging cells
详细信息    查看全文
  • 作者:Jun Zong ; Yuqi Diao ; Fei Ding ; Wei Feng ; Xingjiang Liu
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:22
  • 期:9
  • 页码:1575-1584
  • 全文大小:1,832 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
  • 卷排序:22
文摘
In order to realize a wider application for graphene materials specifically in the field of energy storage, a simple and mass-scalable method described as “the atmospheric, low-temperature, shock-heating process” is proposed in this work. During this low-temperature process, the graphite oxide without pre-treatment is completely exfoliated to form the few-layer graphene materials at atmospheric conditions. The Brunauer-Emmett-Teller (BET)-specific surface area of acquired material at 350 °C can reach 487 m2 g−1. The acquired few-layer graphene materials are also confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results demonstrate that this simple method is feasible for synthesizing the few-layer graphene materials. Besides that, the acquired graphene is also used as the cathode material in the surface-enabled lithium ion-exchanging cell. The galvanostatic charge/discharge tests show that the graphene prepared from this method is suitable for this system and displays a satisfactory electrochemical performance. The acquired graphene sample exhibits the reversible capacities of around 187, 107, 84, 58, and 45 mAh g−1 at 0.1, 2, 5, 10, and 15 A g−1, respectively. At the current density of 0.5 A g−1, the capacity retention can reach 75 % after 2000 cycles.KeywordsGrapheneLow temperatureShock heatingSurface-enabled lithium ion-exchanging cell

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700