Ferroelectric memory based on nanostructures
详细信息    查看全文
  • 作者:Xingqiang Liu (1)
    Yueli Liu (2)
    Wen Chen (2)
    Jinchai Li (1)
    Lei Liao (1)
  • 刊名:Nanoscale Research Letters
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:1
  • 全文大小:1391KB
  • 参考文献:1. Lundstrom M: law forever? / Science 2003, 299:210. CrossRef
    2. Liao L, Fan H, Yan B, Zhang Z, Chen L, Li B, Xing G, Shen Z, Wu T, Sun X: Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. / ACS Nano 2009, 3:700鈥?06. CrossRef
    3. Tue PT, Miyasako T, Trinh BNQ, Li J, Tokumitsu E, Shimoda T: Optimization of Pt and PZT films for ferroelectric-gate thin film transistors. / Ferroelectrics 2010, 405:281鈥?91. CrossRef
    4. Heremans P, Gelinck GH, Muller R, Baeg KJ, Kim DY, Noh YY: Polymer and organic nonvolatile memory devices. / Chem. Mater 2011, 23:341鈥?58. CrossRef
    5. Xie D, Ren TL, Liu LT: M/Bi3.4La0.6Ti3O12/I/Si capacitors for the application in FEDRAM. In / Proceedings of 2007 International Workshop on Electron Devices and Semiconductor Technology: June 3鈥? 2007; Beijing. IEEE, Washington D.C; 2007:74鈥?7. CrossRef
    6. Arimoto Y, Ishiwara H: Current status of ferroelectric random-access memory. / MRS Bull 2004, 29:823鈥?28. CrossRef
    7. Wang H, Wu Y, Cong C, Shang J, Yu T: Hysteresis of electronic transport in graphene transistors. / ACS nano 2010, 4:7221鈥?228. CrossRef
    8. Ling QD, Lim SL, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG: Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly (n-vinylcarbazole) with covalently bonded C60. / Langmuir 2007, 23:312鈥?19. CrossRef
    9. Mukherjee B, Mukherjee M: Nonvolatile memory device based on Ag nanoparticle: characteristics improvement. / Appl Phys Lett 2009, 94:173510. CrossRef
    10. Gerra G, Tagantsev AK, Setter N: Ferroelectricity in asymmetric metal-ferroelectric-metal heterostructures: a combined first-principles phenomenological approach. / Phys Rev Lett 2007, 98:207601. CrossRef
    11. Kornev IA, Fu H, Bellaiche L: Properties of ferroelectric ultrathin films from first principles. / J Mater Sci 2006, 41:137鈥?45. CrossRef
    12. Gruverman A, Kholkin A: Nanoscale ferroelectrics: processing, characterization and future trends. / Rep Prog Phys 2006, 69:2443. CrossRef
    13. Shaw T, Trolier-McKinstry S, McIntyre P: The properties of ferroelectric films at small dimensions. / Annu Rev Mater Sci 2000, 30:263鈥?98. CrossRef
    14. Sakai S, Ilangovan R: Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. / IEEE Electron Device Lett. 2004, 25:369鈥?71. CrossRef
    15. Tue PT, Bui NQT, Miyasako T, Tokumitsu E, Shimoda T: Fabrication and characterization of a ferroelectric-gate FET With a ITO/PZT/SRO/Pt stacked structure. In / International Conference on Microelectronics: December 19鈥?2 2010. IEEE, Cairo. New York; 2010:32鈥?5. CrossRef
    16. Hutchby JA, Bourianoff GI, Zhirnov VV, Brewer JE: Extending the road beyond CMOS. / IEEE Circuits Devices Mag. 2002, 18:28鈥?1. CrossRef
    17. Sohn JI, Choi SS, Morris SM, Bendall JS, Coles HJ, Hong WK, Jo G, Lee T, Welland ME: Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. / Nano Lett. 2010, 10:4316鈥?320. CrossRef
    18. Jimenez D, Miranda E, Godoy A: Analytic model for the surface potential and drain current in negative capacitance field-effect transistors. / IEEE Trans. Electron Devices 2010, 57:2405鈥?409. CrossRef
    19. Yoon SM, Yang SH, Jung SW, Byun CW, Park SHK, Hwang CS, Lee GG, Tokumitsu E, Ishiwara H: Impact of interface controlling layer of Al2O3for improving the retention behaviors of InGaZn oxide-based ferroelectric memory transistor. / Appl Phys Lett 2010, 96:232903. CrossRef
    20. Horenstein MN, Sumner R, Miller P, Bifano T, Stewart J, Cornelissen S: Ultra-low-power multiplexed electronic driver for high resolution deformable mirror systems. In / Proceedings of SPIE 7930,7930M1: January 24 2011. Edited by: . SPIE, San Francisco. Bellingham; 2011.
    21. Brewer JE, Zhirnov VV, Hutchby JA: Memory technology for post CMOS era. / IEEE Circuits Devices Mag. 2005, 21:13鈥?0. CrossRef
    22. Kubel F, Schmid H: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. / Acta Crystallogr., Sect. B: Struct. Sci 1990, 46:698鈥?02. CrossRef
    23. Kang SJ, Bae I, Shin YJ, Park YJ, Huh J, Park SM, Kim HC, Park C: Nonvolatile Polymer memory with nanoconfinement of ferroelectric crystals. / Nano Lett. 2011, 11:138鈥?44. CrossRef
    24. Pradhan MR, Rajan E: A system engineering approach to molecular electronics. / International Journal of Computer Applications IJCA 2010, 3:14鈥?3. CrossRef
    25. Lei B, Li C, Zhang D, Zhou Q, Shung K, Zhou C: Nanowire transistors with ferroelectric gate dielectrics: enhanced performance and memory effects. / Appl Phys Lett 2004, 84:4553鈥?555. CrossRef
    26. Shen Z, Chen Z, Li H, Qu X, Chen Y, Liu R: Nanoembossing and piezoelectricity of ferroelectric Pb (Zr0. 3,Ti0. 7)O3nanowire arrays. / Appl. Surf. Sci. 2011, 257:8820鈥?823. CrossRef
    27. Chiang YD, Chang WY, Ho CY, Chen CY, Ho CH, Lin SJ, Wu TB, He JH: Single-ZnO-nanowire memory. / IEEE Trans Electron Devices 2011, 58:1735鈥?740. CrossRef
    28. Yang Y, Zhang X, Gao M, Zeng F, Zhou W, Xie S, Pan F: Nonvolatile resistive switching in single crystalline ZnO nanowires. / Nanoscale 2011, 3:1917鈥?921. CrossRef
    29. Chen SW, Lee CC, Chen MT, Wu JM: Synthesis of BiFeO3/ZnO core鈥搒hell hetero-structures using ZnO nanorod positive templates. / Nanotechnology 2011, 22:115605. CrossRef
    30. Kim HJ, Jung SM, Kim YH, Kim BJ, Ha S, Kim YS, Yoon TS, Lee HH: Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer. / Thin Solid Films 2011, 519:6140鈥?143. CrossRef
    31. Wang S, Yang H, Xian T, Liu X: Size-controlled synthesis and photocatalytic properties of YMnO3nanoparticles. / Catal Commun 2010, 12:625鈥?28. CrossRef
    32. Mokhnatyuk A: Three-dimensional optical memory in ferroelectric media. / J. Russ. Laser Res. 1999, 20:279鈥?95. CrossRef
    33. Lowrey TA, Duesman KG, Cloud EH: Method of making a 3-dimensional programmable antifuse for integrated circuits. / Patent US5324681 June 28 1994
    34. Ou E, Wong SS: Array architecture for a nonvolatile 3-dimensional cross-point resistance-change memory. / IEEE J Solid State Circuits 2011, 46:2158鈥?170. CrossRef
    35. Fu W, Qin S, Liu L, Kim TH, Hellstrom S, Wang W, Liang W, Bai X, Li AP, Wang E: Ferroelectric gated electrical transport in CdS nanotetrapods. / Nano Lett. 2011, 11:1913鈥?918. CrossRef
    36. Fuhrer M, Kim B, D眉rkop T, Brintlinger T: High-mobility nanotube transistor memory. / Nano Lett. 2002, 2:755鈥?59. CrossRef
    37. Ishiwara H: Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. / Curr Appl Phys 2009, 9:S2-S6. CrossRef
    38. Fu W, Xu Z, Bai X, Gu C, Wang E: Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. / Nano Lett. 2009, 9:921鈥?25. CrossRef
    39. Fu W, Xu Z, Liu L, Bai X, Wang E: Two-bit ferroelectric field-effect transistor memories assembled on individual nanotubes. / Nanotechnology 2009, 20:475305. CrossRef
    40. Rinkio M, Johansson A, Paraoanu G, Torma P: High-speed memory from carbon nanotube field-effect transistors with high-魏 gate dielectric. / Nano Lett. 2009, 9:643鈥?47. CrossRef
    41. Meunier V, Kalinin SV, Sumpter BG: Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes. / Phys Rev Lett 2007, 98:56401. CrossRef
    42. Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, De Leeuw DM: High-performance solution-processed polymer ferroelectric field-effect transistors. / Nat Mater 2005, 4:243鈥?48. CrossRef
    43. Zheng Y, Ni GX, Toh CT, Zeng MG, Chen ST, Yao K, 脰zyilmaz B: Gate-controlled nonvolatile graphene-ferroelectric memory. / Appl Phys Lett 2009, 94:163505. CrossRef
    44. Naber RCG, Asadi K, Blom PWM, De Leeuw DM, De Boer B: Organic nonvolatile memory devices based on ferroelectricity. / Adv Mater 2010, 22:933鈥?45. CrossRef
    45. Kim TW, Gao Y, Acton O, Yip HL, Ma H, Chen H, Alex KYJ: Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications. / Appl Phys Lett 2010, 97:023310. CrossRef
    46. Hong X, Hoffman J, Posadas A, Zou K, Ahn C, Zhu J: Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(ZrTi)O. / Appl Phys Lett 2010, 97:033114. CrossRef
    47. Doh YJ, Yi GC: Nonvolatile memory devices based on few-layer graphene films. / Nanotechnology 2010, 21:105204. CrossRef
    48. Zheng Y, Ni GX, Bae S, Cong CX, Kahya O, Toh CT, Kim HR, Im D, Yu T, Ahn JH: Wafer-scale graphene/ferroelectric hybrid devices for low-voltage electronics. / Europhys Lett 2011, 93:17002. CrossRef
    49. Zheng Y, Ni GX, Toh CT, Tan CY, Yao K, 脰zyilmaz B: Graphene field-effect transistors with ferroelectric gating. / Phys Rev Lett 2010, 105:166602. CrossRef
    50. Hill NA: Why are there so few magnetic ferroelectrics? / J. Phys. Chem. B 2000, 104:6694鈥?709. CrossRef
    51. Dawber M, Rabe K, Scott J: Physics of thin-film ferroelectric oxides. / Rev Mod Phys 2005, 77:1083. CrossRef
    52. Pokalyakin V, Tereshin S, Varfolomeev A, Zaretsky D, Baranov A, Banerjee A, Wang Y, Ramanathan S, Bandyopadhyay S: Proposed model for bistability in nanowire nonvolatile memory. / J Appl Phys 2005, 97:124306. CrossRef
    53. Yeh CS, Wu JM: Characterization of Pt/multiferroic BiFeO/(Ba, Sr)TiO/Si stacks for nonvolatile memory applications. / Appl Phys Lett 2008, 93:154101. CrossRef
    54. Liao M, Imura M, Fang X, Nakajima K, Chen G, Koide Y: Integration of (PbZrTiO) on single crystal diamond as metal-ferroelectric-insulator-semiconductor capacitor. / Appl Phys Lett 2009, 94:242901. CrossRef
    55. Liu X, Ji ZY, Liu M, Shang LW, Li DM, Dai YH: Advancements in organic nonvolatile memory devices. / Chin Sci Bull 2011, 56:3178鈥?190. CrossRef
    56. Lin CM, Shih W, Chang IY, Juan PC, Lee JY: Metal-ferroelectric (BiFeO)-insulator (YO)-semiconductor capacitors and field effect transistors for nonvolatile memory applications. / Appl Phys Lett 2009, 94:142905. CrossRef
    57. Shiga H, Takashima D, Shiratake S, Hoya K, Miyakawa T, Ogiwara R, Fukuda R, Takizawa R, Hatsuda K, Matsuoka F: A 1.6 GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes. / IEEE J Solid State Circuits 2010, 45:142鈥?52. CrossRef
    58. Velev JP, Duan CG, Belashchenko KD, Jaswal S, Tsymbal EY: Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. / Phys Rev Lett 2007, 98:137201. CrossRef
    59. Im JH, Jeon HS, Kim JN, Kim DW, Park BE, Kim CJ: Ferroelectric properties of SrBi2Ta2O9thin films on Si (100) with a LaZrOxbuffer layer. / J. Electroceram. 2009, 22:276鈥?80. CrossRef
    60. Alexe M, Harnagea C, Visinoiu A, Pignolet A, Hesse D, Gsele U: Patterning and switching of nano-size ferroelectric memory cells. / Scr Mater 2001, 44:1175鈥?179. CrossRef
    61. Rinkio M, Johansson A, Paraoanu G, Torma P: High-speed memory from carbon nanotube field-effect transistors with high-泻 gate dielectric. / Nano Lett. 2009, 9:643鈥?47. CrossRef
    62. Naber R, De Boer B, Blom P, De Leeuw D: Low-voltage polymer field-effect transistors for nonvolatile memories. / Appl Phys Lett 2005, 87:203509. CrossRef
    63. Kim K, Lee S: Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. / J Appl Phys 2006, 100:051604. CrossRef
    64. Goux L, Xu Z, Kaczer B, Groeseneken G, Wouters DJ: Deposition of 60 nm thin Sr0.8Bi2.2Ta2O9layers for application in scaled 1T1C and 1T FeRAM devices. / Microelectron Eng 2005, 80:162鈥?65. CrossRef
    65. Lee KH, Lee G, Lee K, Oh MS, Im S, Yoon SM: High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and pentacene channels. / Adv Mater 2009, 21:4287鈥?291. CrossRef
    66. Lau S, Zheng R, Chan H, Choy C: Preparation and characterization of poly (vinylidene fluoride-trifluoroethylene) copolymer nanowires and nanotubes. / Mater Lett 2006, 60:2357鈥?361. CrossRef
    67. Lai EK, Lue HT, Hsieh KY: Stacked thin film transistor, non-volatile memory devices and methods for fabricating the same. / Patent August 16 2011
    68. Lee W, Aw K, Wong H, Chan K, Leung M, Salim NT: An organic thin film transistor based non-volatile memory with zinc oxide nanoparticles. / Thin Solid Films 2011, 519:5208鈥?211. CrossRef
    69. Suresh A, Novak S, Wellenius P, Misra V, Muth JF: Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric. / Appl Phys Lett 2009, 94:123501. CrossRef
    70. Yoon SM, Yang SH, Ko Park SH, Jung SW, Cho DH, Byun CW, Kang SY, Hwang CS, Yu BG: Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3and ferroelectric polymer. / J. Phys. D: Appl. Phys. 2009, 42:245101. CrossRef
    71. Kim HW, Kim NH, Shim JH, Cho NH, Lee C: Catalyst-free MOCVD growth of ZnO nanorods and their structural characterization. / J Mater Sci Mater Electron 2005, 16:13鈥?5. CrossRef
    72. Park C, Im S, Yun J, Lee GH, Lee BH, Sung MM: Transparent photostable ZnO nonvolatile memory transistor with ferroelectric polymer and sputter-deposited oxide gate. / Appl Phys Lett 2009, 95:223506. CrossRef
    73. Liao L, Li J, Liu D, Liu C, Wang D, Song W, Fu Q: Self-assembly of aligned ZnO nanoscrews: Growth, configuration, and field emission. / Appl Phys Lett 2005, 86:083106. CrossRef
    74. Prakash J, Choudhary A, Kumar A, Mehta D, Biradar A: Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. / Appl Phys Lett 2008, 93:112904. CrossRef
    75. Li Q, Zhu X, Xiong HD, Koo SM, Ioannou D, Kopanski JJ, Suehle J, Richter C: Silicon nanowire on oxide/nitride/oxide for memory application. / Nanotechnology 2007, 18:235204. CrossRef
    76. Javey A, Guo J, Wang Q, Lundstrom M, Dai H: Ballistic carbon nanotube field-effect transistors. / Nature 2003, 424:654鈥?57. CrossRef
    77. Nishio T, Miyato Y, Kobayashi K, Ishida K, Matsushige K, Yamada H: The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor. / Nanotechnology 2008, 19:035202. CrossRef
    78. Artukovic E, Kaempgen M, Hecht D, Roth S, Gr眉ner G: Transparent and flexible carbon nanotube transistors. / Nano Lett. 2005, 5:757鈥?60. CrossRef
    79. Bradley K, Gabriel JCP, Gr眉ner G: Flexible nanotube electronics. / Nano Lett. 2003, 3:1353鈥?355. CrossRef
    80. Lee JD, Hur SH, Choi JD: Effects of floating-gate interference on NAND flash memory cell operation. / IEEE Electron Device Lett. 2002, 23:264鈥?66. CrossRef
    81. Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK: Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3dielectric. / Appl Phys Lett 2009, 94:062107鈥?62103. CrossRef
    82. Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. / Phys Rev Lett 2008, 100:206803. CrossRef
    83. Liao L, Bai J, Lin YC, Qu Y, Huang Y, Duan X: High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high dielectric constant gate dielectrics. / Adv Mater 2010, 22:1941鈥?945. CrossRef
    84. Liao L, Bai J, Cheng R, Lin YC, Jiang S, Qu Y, Huang Y, Duan X: Sub-100 nm channel length graphene transistors. / Nano Lett. 2010, 10:3952鈥?956. CrossRef
    85. Liao L, Bai J, Qu Y, Lin Y, Li Y, Huang Y, Duan X: High-泻 oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. / PNAS 2010, 107:6711. CrossRef
    86. Liao L, Duan X: Graphene-dielectric integration for graphene transistors. / Mater Sci Eng R 2010, 354鈥?70.
    87. Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. / Nat Nanotechnol 2008, 3:654鈥?59. CrossRef
    88. Kato Y, Kaneko Y, Tanaka H, Kaibara K, Koyama S, Isogai K, Yamada T, Shimada Y: Overview and future challenge of ferroelectric random access memory technologies. / Jpn. J. Appl. Phys. 2007, 46:2157鈥?163. CrossRef
    89. Gysel R, Stolichnov I, Tagantsev AK, Riester SWE, Setter N, Salvatore GA, Bouvet D, Ionescu AM: Retention in nonvolatile silicon transistors with an organic ferroelectric gate. / Appl Phys Lett 2009, 94:263507. CrossRef
    90. Ren TL, Zhang MM, Jia Z, Wang LK, Wei CG, Xue KH, Zhang YJ, Hu H, Xie D, Liu LT: Model and key fabrication technologies for FeRAM. In / 2009 International Conference on Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors (ULSIC vs. TFT): July 5鈥?0 2009; Xi'an. Edited by: Kuo Y. ECS, Pennington; 2009:217.
    91. Jeong Hwan K, Park BE, Ishiwara H: Fabrication and electrical characteristics of metal-ferroelectric-semiconductor field effect transistor based on poly (vinylidene fluoride). / Jpn. J. Appl. Phys. 2008, 47:8472鈥?475. CrossRef
    92. Lou X: Polarization fatigue in ferroelectric thin films and related materials. / J Appl Phys 2009, 105:024101鈥?24124. CrossRef
    93. Dawber M, Scott J: A model for fatigue in ferroelectric perovskite thin films. / Appl Phys Lett 2000, 76:1060鈥?062. CrossRef
    94. Scott J, Dawber M: Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. / Appl Phys Lett 2000, 76:3801. CrossRef
    95. Lou X, Zhang M, Redfern S, Scott J: Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films. / Phys Rev Lett 2006, 97:177601. CrossRef
    96. Fe L, Wouters D: Effect of RuO2growth temperature on ferroelectric properties of RuO2/Pb (Zr, Ti) O3/RuO2/Pt capacitors. / Appl Phys Lett 2000, 76:1318鈥?320. CrossRef
    97. Jin H, Zhu J: Size effect and fatigue mechanism in ferroelectric thin films. / J Appl Phys 2002, 92:4594. CrossRef
    98. Juan TP, Chang C, Lee JY: A new metal-ferroelectric (PbZr0. 53Ti0. 47O3)-insulator (Dy2O3)-semiconductor (MFIS) FET for nonvolatile memory applications. / IEEE Electron Device Lett. 2006, 27:217鈥?20. CrossRef
    99. Luo YF, Xie D, Zang YY, Song R, Ren TL, Liu LT: Buffer layer dependence of B3.15Nd0.85Ti3O12(BNdT) based MFIS capacitor for FeFET application. In / 2008 9th International Conference on Solid-State and Integrated-Circuit Technology: October 20鈥?3 2008;Beijing. Edited by: Huang R. IEEE, Washington D.C; 2008:2592.
    100. Yang C, Hu G, Wen Z, Yang H: Effects of Bi2Ti2O7buffer layer on memory properties of BiFe0. 95Mn0. 05O3thin film. / Appl Phys Lett 2008, 93:172906鈥?72903. CrossRef
    101. Murari N, Thomas R, Pavunny S, Calzada J, Katiyar R: DyScO3buffer layer for a performing metal-ferroelectric-insulator-semiconductor structure with multiferroic BiFeO3thin film. / Appl Phys Lett 2009, 94:142907鈥?42903. CrossRef
    102. Park C, Lee G, Lee KH, Im S, Lee BH, Sung MM: Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface. / Appl Phys Lett 2009, 95:153502. CrossRef
    103. Park CH, Lee KH, Lee BH, Sung MM, Im S: Channel/ferroelectric interface modification in ZnO non-volatile memory TFT with P(VDF-TrFE) polymer. / J Mater Chem 2009, 20:2638鈥?643. CrossRef
    104. Son JY, Ryu S, Park YC, Lim YT, Shin YS, Shin YH, Jang HM: A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube. / ACS Nano 2010, 4:7315鈥?320. CrossRef
    105. Wang Z, Hu J, Yu MF: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO nanowire. / Appl Phys Lett 2006, 89:263119. CrossRef
    106. Zhang X, Zhao X, Lai C, Wang J, Tang X, Dai JY: Synthesis and piezoresponse of highly ordered Pb(Zr0. 53Ti0. 47)O3 nanowire arrays. / Appl Phys Lett 2004, 85:4190鈥?192. CrossRef
    107. Wang J, Sandu C, Colla E, Wang Y, Ma W, Gysel R, Trodahl H, Setter N, Kuball M: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr, Ti)O nanowires. / Appl Phys Lett 2007, 90:133107. CrossRef
    108. Alexe M, Hesse D, Schmidt V, Alexe M, Hesse D, Schmidt V, Hesse D, Fan H, Zacharias M, Gsele U: Ferroelectric nanotubes fabricated using nanowires as positive templates. / Appl Phys Lett 2006, 89:120鈥?23. CrossRef
    109. Feng M, Wang W, Zhou Y, Jia D: Synthesis and characterization of ferroelectric SrBi2Ta2O9nanotubes arrays. / J. Sol鈥揼el Sci. Technol 2009, 52:120鈥?23. CrossRef
    110. Seo B, Shaislamov U, Kim SW, Kim HK, Yang B, Hong S: Bi3. 25La0. 75Ti3O12(BLT) nanotube capacitors for semiconductor memories. / Physica E 2007, 37:274鈥?78. CrossRef
    111. Takashima D: Overview and scaling prospect of ferroelectric memories. / CMOS Processors and Memories 2010, 36鈥?80.
    112. Choi WB, Bae E, Kang D, Chae S, Cheong B, Ko J, Lee E, Park W: Aligned carbon nanotubes for nanoelectronics. / Nanotechnology 2004, 15:S512. CrossRef
    113. Sun Y, Fuge GM, Ashfold MNR: Growth mechanisms for ZnO nanorods formed by pulsed laser deposition. / Superlattices Microstruct. 2006, 39:33鈥?0. CrossRef
  • 作者单位:Xingqiang Liu (1)
    Yueli Liu (2)
    Wen Chen (2)
    Jinchai Li (1)
    Lei Liao (1)

    1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, People鈥檚 Republic of China
    2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People鈥檚 Republic of China
  • ISSN:1556-276X
文摘
In the past decades, ferroelectric materials have attracted wide attention due to their applications in nonvolatile memory devices (NVMDs) rendered by the electrically switchable spontaneous polarizations. Furthermore, the combination of ferroelectric and nanomaterials opens a new route to fabricating a nanoscale memory device with ultrahigh memory integration, which greatly eases the ever increasing scaling and economic challenges encountered in the traditional semiconductor industry. In this review, we summarize the recent development of the nonvolatile ferroelectric field effect transistor (FeFET) memory devices based on nanostructures. The operating principles of FeFET are introduced first, followed by the discussion of the real FeFET memory nanodevices based on oxide nanowires, nanoparticles, semiconductor nanotetrapods, carbon nanotubes, and graphene. Finally, we present the opportunities and challenges in nanomemory devices and our views on the future prospects of NVMDs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700