RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration
详细信息    查看全文
  • 作者:Xiaoqing Fang (1) (2)
    Tong Qiu (2)
    Lijuan Xie (2)
    Yixia Yin (2)
    Binbin Li (2)
    Qiongjiao Yan (2)
    Honglian Dai (2) (3)
    Xinyu Wang (2) (3)
    Shipu Li (2) (3)
  • 关键词:RGD ; Schwann cells ; cell behavior ; PDLLA ; PRGD conduit ; sciatic nerve regeneration
  • 刊名:Journal of Wuhan University of Technology--Materials Science Edition
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:29
  • 期:3
  • 页码:620-625
  • 全文大小:
  • 参考文献:1. Epple M, Rueger J M Festk. Orperchemie Und Chirurgie [J]. / Nachr. Chem. Tech. Lab., 1999, 47: 1 405- 410 CrossRef
    2. Rasmussen J R, Stedronsky E R, Whitesides G M. Introduction, Modification, and Characterization of Functional Groups on the Surface of Low-density Polyethylene Film [J]. / J. Am. Chem. Soc., 1977, 99: 4 736- 745 CrossRef
    3. Lee J H, Jung J W, Kang I K, / et al. Cell Behaviour on Polymer Surfaces with Different Functional Groups [J]. / Biomaterials, 1994, 15: 705-11 CrossRef
    4. Brandley B K, Schnaar R L. Covalent Attachment of an ARG-GLY-ASP Sequence Peptide to Derivatizable Polyacrylamide Surfaces: Support of Fibroblast Adhesion and Long-term Growth [J]. / Anal. Biochem., 1998, 172: 270-78 CrossRef
    5. Lin H B, Zhao Z C, Garcia-Echeverria C, / et al. Synthesis of a Novel Polyurethane Copolymer Containing Covalently AttachedRGD Peptide [J]. / J Biomater. Sci., 1991, 3: 217-27 CrossRef
    6. Falb R D, Grode G A. Covalent Bonding of Proteins to Solid Surfaces [J]. / Fed. Proc., 1971, 30: 1 688- 691
    7. Kobayashi K, Sumitomo H. Oligosaccharide-carrying Styrenetype Macromers. Polymerization Andspecific Interactions between the Polymers and Liver Cells [J]. / J. Macromol. Sci. Chem., 1988, 25: 655-67 CrossRef
    8. Weigel P H, Schnaar R L, Kuhlenschmidt M S, / et al. Adhesion of Hepatocytes to Immobilized Sugars: A Threshold Phenomenon [J]. / J. Biol. Chem., 1979, 354: 10 830-0 838
    9. Ruoslahti E, Pierschbacher M D. New Perspectives in Cell Adhesion: RGD and Integrins [J]. / Science, 1987, 238: 491-97 CrossRef
    10. Albelda S M, Buck C A. Integrins and Other Cell Adhesion Molecules [J]. / FASEB. J., 1990, 4: 2 868- 880
    11. Travis J. Biotech Gets a Grip on Cell Adhesion [J]. / Science, 1993, 260: 906-08 CrossRef
    12. Kammerer P W, Heller M, Brieger J, / et al. Immobilisation of Linear and Cyclic RGD-peptides on Titanium Surfaces and Their Impact on Endothelial Cell Adhesion and Proliferation [J]. / Eur. Cells. Mater., 2011, 21: 364-72
    13. Shu X Z, Ghosh K, Liu Y, / et al. Attachment and Spreading of Fibroblasts on an RGD Peptide-modified Injectable Hyaluronan Hydrogel [J]. / J. Biomed. Mater. Res. A, 2004, 68: 365-75 CrossRef
    14. Li B, Chen J X, Wang J H C. RGD Peptide-conjugated poly (dimethylsiloxane) Promotes Adhesion, Proliferation, and Collagen Secretion of Human Fibroblasts [J]. / J. Biomed. Mater. Res. A, 2006, 79: 989-98 CrossRef
    15. Hersel U, Dahmen C, Kessler H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond [J]. / Biomaterials, 2003, 24: 4 385- 415 CrossRef
    16. Davis D H, Giannoulis C S, Johnsonb R W, / et al. Immobilization of RGD to Silicon Surfaces for Enhanced Cell Adhesion and Proliferation[J]. / Biomaterials, 2002, 23: 4 019- 027 CrossRef
    17. Kafi M A, El-Said W A, Kim T H, / et al. Cell Adhesion, Spreading, and Proliferation on Surface Functionalized with RGD Nanopillar Arrays [J]. / Biomaterials, 2012, 33: 731-39 CrossRef
    18. Puleo D A, Bizios R. RGDS Tetrapeptide Binds to Osteoblasts and Inhibits Fibronectin-mediated Adhesion [J]. / Bone, 1991, 12:271-76 CrossRef
    19. Rezania A, Thomas C H, Branger A B, / et al. The Detachment Strength and Morphology of Bone Cells Contacting Materials Modified with a Peptide Sequence Found within Bone Sialoprotein [J]. / J. Biomed. Mater. Res., 1997, 37:9-9 CrossRef
    20. Massia S, Hubbell J. Covalent Surface Immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing Peptides to Obtain Well-defined Cell-adhesive Substrates [J]. / Anal. Biochem., 1990, 187: 292-01 CrossRef
    21. Qiongjiao Y, Yixia Y, Binbin L. Use New PLGL-RGD-NGF Nerve Conduits for Promoting Peripheral Nerve Regeneration [J]. / Biomedical Engineering Online, 2012, 11: 36-0 CrossRef
    22. Wohlrab S, Müller S, Schmidt A, / et al. Cell Adhesion and Proliferation on RGD-modified Recombinant Spider Silk Proteins [J]. / Biomaterials, 2012, 33: 6 650- 659 CrossRef
    23. Wacker B K, Alford S K, Scott E A, / et al. Endothelial Cell Migration on RGD-peptide-containing PEG Hydrogels in the Presence of Sphingosine 1-Phosphate [J]. / Biophysical J., 2008, 94: 273-85 CrossRef
    24. Zayzafoon M, Stell C, Irwin R, / et al. Extracellular Glucose Influences Osteoblast Differentiation and c-jun Expression [J]. / J. Cell Bioche., 2000, 79:301-10 CrossRef
    25. Li H H, He B, Peng H, / et al. Effects of Pyrroloquinoline Quinone on Proliferation and Expression of c-fos, c-jun, CREB and PCNA in Cultured Schwann Cells [J]. / Zhonghua Zheng Xing Wai Ke Za Zhi, 2011, 27: 298-03
    26. Peris L, Thery M, Faure J, / et al. Tubulin Tyrosination is a Major Factor Affecting the Recruitment of CAP-Gly Proteins at Microtubule Plus Ends[J]. / J. Cell Biol., 2006, 174: 839-49 CrossRef
    27. Ramey V H, Wang H W, Nakajima Y, / et al. The Dam1 Ring Binds to the E-hook of Tubulin and Diffuses Along the Microtubule[J]. / Mol. Biol. Cell, 2011, 22: 457-66 CrossRef
    28. Trinczek B, Ebneth A, Mandelkow E M, / et al. Tau Regulates the Attachment/Detachment but not the Speed of Motors in Microtubule-Dependent Transport of Single Vesicles and Organelles [J]. / J. Cell. Sci., 1999, 112: 2 355- 367
    29. Fuhrmann-Stroissnigg H, Noiges R, Descovich L, / et al. The Light Chains of Microtubule-associated Proteins MAP1A and MAP1B Interact with α1-syntrophin in the Central and Peripheral Nervous System [J]. / PLos One, 2012, 7: 49 722-9 727 CrossRef
    30. Liu W Q, Martinez J A, Durand J, / et al. RGD-mediated Adhesive Interactions are Important for Peripheral Axon Outgrowth / in Vivo [J]. / Neurobiol. Dis., 2009, 34:11-2 CrossRef
    31. Afshari F T, Kwok J C, White L. Schwann Cell Migration Is Integrin-Dependent and Inhibited by Astrocyte-produced Aggrecan [J]. / Glia, 2010, 58: 857-69
  • 作者单位:Xiaoqing Fang (1) (2)
    Tong Qiu (2)
    Lijuan Xie (2)
    Yixia Yin (2)
    Binbin Li (2)
    Qiongjiao Yan (2)
    Honglian Dai (2) (3)
    Xinyu Wang (2) (3)
    Shipu Li (2) (3)

    1. Department of Paediatrics, Wuhan General Hospital of Guangzhou Military, Wuhan, 430070, China
    2. Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, China
    3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
  • ISSN:1993-0437
文摘
Schwann cells play a key role in peripheral nerve growth and regeneration. The aim of this study was to evaluate the effects of RGD peptides on Schwann cell behavior, and to identify the effects of the modified PDLLA films with RGD in vivo. The results revealed that RGD coating with the concentration of 100-00 ug/mL promoted the cell proliferation and boosted the cell migration. Molecularly, RGD coating also enhanced the expression of the proliferation related genes (c-fos and c-jun) and the cell behavior related genes (actin, tublin, tau and MAP1) at first stages of the seeding, which is similar to the effects from laminin coating. In vivo, RGD addition improved the recovery efficiency of the transected nerve in regard of the more survived Schwann cells in vivo and the formation of more mature myelin sheath. Taken together, RGD peptides are good candidates to enhance the biocompatibility of the biomaterials and facilitate the peripheral nerve regeneration by prompting responses in Schwann cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700