Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization
详细信息    查看全文
  • 作者:Chen Hou (1)
    Lincheng Zhou (1)
    Hao Zhu (1)
    Xinyu Wang (1)
    Niran Hu (1)
    Fang Zeng (1)
    Liyuan Wang (1)
    Hang Yin (1)

    1. State Key Laboratory of Applied Organic Chemistry
    ; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province ; College of Chemistry and Chemical Engineering ; Institute of Biochemical Engineering and Environmental Technology ; Lanzhou University ; Lanzhou ; 730000 ; China
  • 关键词:Magnetic composite ; Polydopamine ; Enzyme immobilization ; Enzyme activity ; Thermo ; stability
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:42
  • 期:5
  • 页码:723-734
  • 全文大小:894 KB
  • 参考文献:1. Garcia, J, Zhang, Y, Taylor, H, Cespedes, O, Webb, ME, Zhou, DJ (2011) Multilayer enzyme-coupled magnetic聽nanoparticles聽as efficient, reusable biocatalysts and biosensors. Nanoscale 3: pp. 3721-3730 CrossRef
    2. Ince, A, Bayramoglu, G, Karagoz, B, Altintas, B, Bicak, N, Arica, MY (2012) A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem Eng J 189鈥?90: pp. 404-412 CrossRef
    3. Torres, CF, Hill, CG (2004) Lipase-catalyzed acidolysis of butter oil with conjugated linoleic acid: a kinetic study involving multiple reuse of the immobilized enzyme. Ind Eng Chem Res 43: pp. 3714-3722 CrossRef
    4. Sanchez, S, Demain, AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15: pp. 224-230 CrossRef
    5. Kim, JB, Grate, JW, Wang, P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61: pp. 1017-1026 CrossRef
    6. Chang, SW, Shaw, JF, Yang, KH, Chang, SF, Shieh, CJ (2008) Studies of optimum conditions for covalent immobilization of聽<聽i聽>聽Candida rugosa聽聽lipase on poly (纬-glutamic acid) by RSM. Bioresour Technol 99: pp. 2800-2805 CrossRef
    7. Grunwald, P, Hansen, K, Gun脽er, W (1997) The determination of effective diffusion coefficients in a polysaccharide matrix used for the immobilization of biocatalysts. Solid State Ionics 101鈥?03: pp. 863-867 CrossRef
    8. Shen, WZ, Ren, LW, Zhou, H, Zhang, SC, Fan, WB (2011) Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support. J Mater Chem 21: pp. 3890-3894 CrossRef
    9. Yang, XW, Cai, ZW, Ye, ZM, Chen, S, Yang, Y, Wang, HF (2012) In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes. Nanoscale 4: pp. 414-416 CrossRef
    10. Mei, L, Xie, R, Yang, C, Ju, XJ, Wang, W, Wang, JY (2013) pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. Chem Eng J 232: pp. 573-581 CrossRef
    11. Xu, R, Zhou, QJ, Li, FT, Zhang, BR (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222: pp. 321-329 CrossRef
    12. Geim, AK (2009) Graphene: status and Prospects. Science 324: pp. 1530-1534 CrossRef
    13. Bak, JM, Lee, H (2012) pH-tunable aqueous dispersion of graphene composites functionalized with poly (acrylic acid) brushes. Polymer 53: pp. 4955-4960 CrossRef
    14. Eswaraiah, V, Balasubramaniam, K, Ramaprabhu, S (2012) One-pot synthesis of conducting grapheme-polymer composites and their strain sensing application. Nanoscale 4: pp. 1258-1262 CrossRef
    15. Liang, RP, Liu, CM, Meng, XY, Wang, JW, Qiu, JD (2012) A novel open-tubular capillary electrochromatography using 尾-cyclodextrin functionalized graphene oxide-magnetic composite s as tunable stationary phase. J Chromatogr A 1266: pp. 17
    16. Lin, Y, Tao, Y, Pu, F, Ren, J, Qu, X (2011) Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations. Adv Funct Mater 21: pp. 4565-4572 CrossRef
    17. Feng, L, Wu, L, Wang, J, Ren, J, Miyoshi, D, Sugimoto, N (2012) Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv Mater 24: pp. 125-131 CrossRef
    18. Nam, B, Lee, HJ, Goh, H, Lee, YB, Choi, WS (2012) Sandwich-like graphene composite s armed with nanoneedles. J Mater Chem 22: pp. 3148-3153 CrossRef
    19. Zhang, Y, Zhang, J, Huang, X, Zhou, X, Wu, H, Guo, S (2012) Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 8: pp. 154-159 CrossRef
    20. Chen, L, Wei, B, Zhang, XT, Li, C (2013) Bifunctional graphene/纬-Fe2O3 hybrid aerogels with double nanocrystalline networks for enzyme immobilization. Small 9: pp. 2331-2340 CrossRef
    21. Ma, YX, Li, YF, Zhao, GH, Yang, LQ, Wang, JZ, Shan, X (2011) Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase. Carbon 50: pp. 2976-2986 CrossRef
    22. Cheng, G, Liu, YL, Wang, ZG, Zhang, JL, Sun, DH, Ni, JZ (2012) The GO/rGO-Fe3O4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. J Mater Chem 22: pp. 21998-22004 CrossRef
    23. Li, XH, Zhu, H, Feng, J, Zhang, JW, Deng, X, Zhou, BF (2013) One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60: pp. 488-497 CrossRef
    24. Kang, K, Choi, IS, Nam, Y (2011) A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials 32: pp. 6374-6380 CrossRef
    25. Lee, H, Dellatore, SM, Miller, WM, Messersmith, PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Nature 318: pp. 426-430
    26. Chen, X, Yan, Y, Mullner, M, Koeverden, MP, Noi, KF, Zhu, W (2014) Engineering fluorescent poly(dopamine) capsules. Langmuir 30: pp. 2921-2925 CrossRef
    27. Yan, YH, Zheng, ZF, Deng, CH, Zhang, XM, Yang, PY (2013) Facile synthesis of Ti4聽+聽-immobilized Fe3O4@ polydopamine core鈥搒hell microspheres for highly selective enrichment of phosphopeptides. Chem Commun 49: pp. 5055-5057 CrossRef
    28. Hoa, CC, Ding, SJ (2014) Dopamine-induced silica鈥損olydopamine hybrids with controllable morphology. Chem Commun 50: pp. 3602-3605 CrossRef
    29. Faure, E, Daudr茅, CF, J茅r么me, C, Lyskawa, J, Fournier, D, Woisel, P (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38: pp. 236-270 CrossRef
    30. Ma, ZY, Jia, X, Hu, JM, Zhang, GX, Zhou, F, Liu, ZY (2013) Dual-responsive capsules with tunable low critical solution temperatures and their loading and release behavior. Langmuir 29: pp. 5631-5637 CrossRef
    31. Raghavendra, T, Basak, A, Manocha, LM, Shah, AR, Madamwar, D (2013) Robust nanobioconjugates of Candida antarctica lipase B-Multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresource Technol 140: pp. 103-110 CrossRef
    32. Mart铆n, M, Salazar, P, Villalonga, E, Campuzano, S, Pingarr贸nd, JM, Gonz谩lez-Mora, JL (2014) Preparation of core-shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B 2: pp. 739-746 CrossRef
    33. Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: pp. 248-254 CrossRef
    34. Ren, LL, Huang, S, Fan, W, Liu, TX (2011) One-step preparation of hierarchical superparamagnetic iron oxide/grapheme composites via hydrothermal method. Appl Surf Sci 258: pp. 1132-1138 CrossRef
    35. Kassaee, MZ, Masrouri, H, Movahedi, F (2011) Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of a-amino nitriles in water. Appl Catal A Gen 395: pp. 28-33 CrossRef
    36. Watanabe, N, Yasude, O, Yasuji, M, Koichi, Y (1977) Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of crude enzyme. Agric Biol Chem 41: pp. 1353-1358 CrossRef
    37. Zhao, S, Asuha, S (2010) One-pot synthesis of magnetite nanopowder and their magnetic properties. Powder Technol 197: pp. 295-297 CrossRef
    38. Deng, H, Li, XL, Peng, Q, Wang, X, Chen, JP, Li, YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Edit 44: pp. 2782-2785 CrossRef
    39. Song, C, Wu, D, Zhang, F, Liu, P, Lu, Q, Feng, X (2012) Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem Commun 48: pp. 2119-21121 CrossRef
    40. Wang, YX, Wang, SH, Niu, HY, Ma, YR, Zeng, T, Cai, YQ, Meng, ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283: pp. 20-26 CrossRef
    41. Ferrari, AC, Robertson, J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61: pp. 14095-14107 CrossRef
    42. Liu, YQ, Gao, L, Sun, J, Wang, Y, Zhang, J (2009) Stable Nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20: pp. 465605-465611 CrossRef
    43. Alwarappan, S, Erdem, A, Liu, C, Li, CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113: pp. 8853-8857 CrossRef
    44. Fei, B, Qiana, BT, Yanga, ZY, Wanga, RH, Liu, WC, Mak, CL (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46: pp. 1792-1828 CrossRef
    45. Nagai, N, Kumasaka, N, Kawashima, T, Ka, JH, Nishizawa, M, Abe, T (2010) Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci-Mater M 21: pp. 1891-1898 CrossRef
    46. Powell, HM, Drexler, JW (2011) Dehydrothermal crosslinking of electrospun collagen. Tissue Engineering Part C-Meth 17: pp. 9-17 CrossRef
    47. Liu, X, Chen, X, Li, YF, Wang, XY, Peng, XM, Zhu, WW (2012) Preparation of superparamagnetic Fe3O4@Alginate/Chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. Appl Mater Interfaces 4: pp. 5169-5178 CrossRef
    48. Liu, T, Zhao, YD, Wang, XF, Li, X, Yan, YJ (2013) A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids. Bioresource Technol 132: pp. 99-102 CrossRef
    49. Mateo, C, Palomo, JM, Fernandez, LG, Guisan, JM, Fernandez, LR (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40: pp. 1451-1463 CrossRef
    50. Rabbani, G, Ahmad, E, Zaidi, N, Fatima, S, Khan, RH (2012) pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem Biophys 62: pp. 487-499 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
By the facile adhesion way, the novel composite complex by polydopamine (PDA) and magnetic graphite nanosheets (Fe3O4@GNSs) has been successfully synthesized. The resulting composite was characterized by means of scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, and Raman spectra, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Meanwhile, the PDA functionalized Fe3O4@GNSs (Fe3O4@GNSs-PDA) was applied for Candida rugosa lipase (CRL) immobilization covalently without any toxic coupling agent. Combining the superior physical properties and chemical stability of Fe3O4@GNSs and the well biocompatibility, functional characteristics of PDA, the Fe3O4@GNSs-PDA composite displayed several advantages, including the high enzyme capacity, enzyme activity and stability and a decrease in enzyme loss. Our work demonstrated that the mussel-inspired Fe3O4@GNSs can be extended to many other applications such as biocatalytic, genetic and industrial.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700